Use of Bis[2-(trialkylsilyl)ethyl] *N*,*N*-Dialkylphosphoramidites for the Synthesis of Phosphate Monoesters¹

Kenneth C. Ross, ^a Daniel L. Rathbone,^b William Thomson^b and Sally Freeman^{*}†^a ^a Department of Pharmaceutical and Biological Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK ^b Aston Molecules, Aston Science Park, Birmingham B7 4EJ, UK

The bis[2-(trimethylsilyl)ethyl] *N*,*N*-dialkylphosphoramidites **7a** and **b** and bis[2-(methyldiphenylsilyl)ethyl] *N*,*N*-dialkylphosphoramidites **6a** and **b** have been prepared by reaction of the *N*,*N*dialkylphosphorochloridites **5a** and **b** with the appropriate 2-(trialkylsilyl)ethanol. In the presence of 1*H*-tetrazole, the phosphoramidites **6a**, **b** and **7a**, **b** phosphorylated MeOH, PhCH₂OH, PhCH₂CH₂OH, Me(PhCH₂CH₂)CHOH, 2,3,4,5,6-penta-*o*-benzyl-*myo*-inositol and Bu^tOH, to give the phosphites **8a**-**h**. Without isolation, these were oxidised to the corresponding phosphate triesters **9a**-**h** with *m*-chloroperoxybenzoic acid. Treatment of the triesters **9a**-**h** with tetrabutylammonium fluoride removes only one 2-(trialkylsilyl)ethyl group to give the diesters **10a**-**h**, whereas treatment with a solution of hydrofluoric acid in acetonitrile-water gives the phosphate monoesters **11a**-**e**.

The P^{11} phosphoramidites 1 have recently joined the P^{V} phosphorylation strategies² as popular reagents for the synthesis of phosphate monoesters. The phosphoramidites 1 react with a range of alcohols in the presence of 1 H-tetrazole to give the phosphites 2, which are readily oxidised with, for example, m-chloroperoxybenzoic acid (MCPBA) or sulfur to give the triesters 3 (X = O, S). Removal of the protecting groups from 3 gives rise to the phosphate or thiophosphate monoesters 4 (Scheme 1). Several phosphoramidite reagents have been developed, each requiring a method of deprotection. Reese and Ward³ have used bis(2-cyanoethyl) N,N-diethyl-phosphoramidite **1a** in their synthesis of *myo*-inositol phosphates and Uhlmann and Engels⁴ have used bis(2cyanoethyl) and bis[2-(p-nitrophenyl)ethyl] N,N-diisopropylphosphoramidites 1b and c in their synthesis of nucleotides. The 2-cyanoethyl and 2-(nitrophenyl)ethyl groups are readily removed by a β -elimination catalysed by base. Two research groups 5.6 have evaluated the use of dibenzyl N,N-dialkylphosphoramidites 1d, e, the benzyl substituents from the phosphate triester products being removed by hydrogenolysis. We have recently used the bis(p-acyloxybenzyl) N,N-diisopropylphosphoramidites 1f to phosphorylate AZT, the *p*-acyloxybenzyl groups from the resulting triesters being removed either by chemical or esterase-catalysed hydrolyses.7 Bannwarth and co-workers^{8,9} have developed the bis(allyl) N,N-diisopropylphosphoramidites 1g, the allyl groups from the phosphate triesters being removed with $[Pd^{0}(PPh_{3})_{4}]$. Di-tert-butyl N,N-diethylphosphoramidite 1h has also been utilised,^{10,11} the tert-butyl groups being removed by treatment with acid. Watanabe and co-workers^{12,13} have recently developed ophenylenedimethylene N,N-diethylphosphoramidite 1i, the protecting group being removed by hydrogenolysis on Pd-C or by reduction with sodium in liquid ammonia or sodium naphthalide in tetrahydrofuran.

Not all \mathbb{R}^3 groups of the phosphate or thiophosphate triesters 3 or monoesters 4 will be stable to the deprotection conditions, therefore other \mathbb{R}^2 groups which can be removed under mild conditions are of interest. Silicon-based protecting groups are used extensively because of the ease with which they are removed by fluoride ion.¹⁴ Derivatisation of phosphates with,

for example, 1,1,1,3,3,3-hexamethyldisilazane to give P-O-SiMe₃ esters is used for GLC and mass spectral analyses, however these esters are very unstable towards traces of moisture. In contrast, the $P-O-CH_2-CH_2-SiR_3$ group will be more stable, but should be readily cleaved by fluoride anion to give ethene and the corresponding trialkylsilyl fluoride. Very recently other groups have used 2-(methyldiphenylsilyl)ethyl bis(N,N-diisopropyl)phosphoramidite¹⁵ and 2-(trialkylsilyl)ethyl 2-cyanoethyl N,N-diisopropylphosphoramidite¹⁶ for the phosphorylation of alcohols. Here, the phosphoramidites 6a, b and 7a, b bearing the 2-(methyldiphenylsilyl)ethyl and 2-(trimethylsilyl)ethyl groups, respectively, have been prepared and evaluated in the synthesis of phosphate monoesters. Since the completion of this study, Chao and co-workers¹⁷ have communicated the use of bis[2-(trimethylsilyl)ethyl] N,Ndiisopropylphosphoramidite 7a to phosphorylate a tyrosine residue on a protected peptide.

[†] Address for correspondence: Department of Pharmacy, University of Manchester, Manchester M13 9PL, UK.

Results and Discussion

Bis[2-(trialkylsilyl)ethyl] N.N-dialkylphosphoramidites 6a, b and 7a, b were prepared by treatment of the N.N-dialkylphosphorochloridite 5a, b with 2 equiv. of either 2-(trimethylsilyl)ethanol or 2-(methyldiphenylsilyl)ethanol in the presence of triethylamine (Scheme 2). The phosphoramidites were purified by flash column chromatography and were characterised by ¹H, ¹³C and ³¹P NMR spectroscopy. In the presence of 1Htetrazole, the phosphoramidites 6a, b and 7a, b were then used to phosphorylate methanol, the primary alcohols benzyl alcohol and 2-phenylethanol, the secondary alcohols 4-phenylbutan-2-ol and 2,3,4,5,6-penta-o-benzyl-myo-inositol,¹⁸ and tert-butyl alcohol to give the phosphites 8a-h. Without isolation, the phosphites were treated with MCPBA to give the phosphate triesters 9a-h which were isolated as oils by flash column chromatography in yields of ca. 50% and were fully characterised by ¹H, ¹³C and ³¹P NMR spectroscopy and IR spectrometry. In many cases, the mass spectra (EI, CI or FAB) of these compounds failed to give a molecular ion, which is attributable to the ease with which the R^{1}_{3} Si group cleaves to give this fragment as the most abundant ion. In some cases the viscous oils also failed to give satisfactory elemental analysis data.

The deprotection of the POCH₂CH₂SiR₃ group has

previously been achieved with tetrabutylammonium fluoride (TBAF). For example, this reagent has been used to remove a 2-(methyldiphenylsilyl)ethyl,^{19,15} 2-(triphenylsilyl)ethyl¹⁶ or 2-(trimethylsilyl)ethyl²⁰ group from nucleotide analogues. Here it was established that only one 2-(methyldiphenylsilyl)ethyl group was removed from the triester **9b** with TBAF in either THF at room temperature or DMSO at 70 °C to give the diester **10b**. This result is an agreement with the recent findings of Sawabe and co-workers²¹ who reported mono deprotection of the phosphate triester **9i** to the diester **10i** with this reagent.

A solution of lithium tetrafluoroborate in acetonitrile has been used by Lipshutz and co-workers to remove a 2-(trimethylsilyl)ethyl group from a variety of carbohydrates.²² However, the deprotection of the phosphate triester **9c** using this reagent was unsuccessful, giving rise, as judged by ³¹P NMR spectroscopy, to a mixture of unidentified products.

Zhang and Robins²³ used a solution of ammonium fluoride in methanol at 60 °C to remove various silyl groups from protected nucleosides. Under these conditions only one silyl protecting group was removed from the phosphate triesters 9cand e to give the diesters 10c and e.

A solution of trifluoroacetic acid in acetonitrile was used by Chao and co-workers to remove two 2-(trimethylsilyl)ethyl

Fig. 1 Degradation profile of bis[2-(methyldiphenylsilyl)ethyl] benzyl phosphate 9b with 15 equiv. of aqueous hydrofluoric acid in acetonitrile at 40 °C. The reaction was monitored by ¹H NMR spectroscopy and the percentages of the triester (9b, \Box), diester (10b, \bullet) and monoester (11c, \blacktriangle) were determined by the integration of PhCH₂OP peaks.

groups from a phosphate triester of a protected peptide.¹⁷ With this method both 2-(methyldiphenylsilyl)ethyl protecting groups were removed from the phosphate triester **9e**, although, surprisingly the other phosphate triesters were stable to these deprotection conditions.

During the course of this work, Sawabe and co-workers²¹ showed that the triester **9**i gave the monoester **11f** in the presence of a solution of aqueous hydrofluoric acid in MeCN. The reaction of the phosphate triesters **9b**, **c**, **f** and **h** with 15 equiv. of aqueous hydrofluoric acid in CD₃CN were monitored by ³¹P and ¹H NMR spectroscopy. The 2-(trimethylsilyl)ethyl group was cleaved at room temperature whereas the 2-(methyldiphenylsilyl)ethyl group required heating to 40 °C.¹⁷ In each case, some loss of one 2-trialkylsilyl protecting group was observed within 1 h, with the formation of ethene, $\delta_{\rm H}(\rm CD_3CN)$ 5.42 (s), and the trialkylsilyl fluoride, $\delta_{\rm H}$ 0.23 (d, $J_{\rm FH}$ 7.3, Me₃SiF) and $\delta_{\rm H}$ 0.77 (d, $J_{\rm FH}$ 7.3, MePh₂SiF) as by-products, consistent with the reaction proceeding by fluoride anion attack at silicon. Removal of the second 2-(trialkylsilyl)ethyl group was typically complete within 24 h.

Fig. 1 shows the degradation profile for the phosphate triester 9b, the percentage of each component being determined from the integration of the PhCH₂OP groups in the ¹H NMR spectra. The chemical shifts for the relevant peaks are $\delta_{\rm H}$ 4.88 (d, $J_{\rm PH}$ 8.3, triester 9b), 4.95 (d, $J_{\rm PH}$ 7.9, diester 10b) and 5.03 (d, $J_{\rm PH}$ 7.4, monoester 11c). The data fitted the kinetic profile $9 \xrightarrow{k_2} 10 \xrightarrow{k_2} 11$, where k_1 and k_2 are first order rate constants, using the program developed by Irwin.²⁴ The rate constant k_1 , for the conversion of the triester 9b into the diester 10b is 0.0119 min⁻¹ (t_{\pm} 58 min) (r = 0.991), and the rate constant k_2 , for the conversion of the diester 10b into the monoester 11c is 0.002 24 min⁻¹ (t_{\pm} 309 min) (r = 0.980), which demonstrates that removal of the second 2-(methyldiphenylsilyl)ethyl group is five times slower than removal of the first.

An aqueous solution of hydrofluoric acid in MeCN was then used on a preparative scale to remove both 2-(trialkylsilyl)ethyl groups from the phosphate triesters **9b–f** and **9h** to give the monoesters **11a–e** in quantitative yields. The deprotection of the phosphate triester **9g** using HF in MeCN-H₂O was not successful owing to the anticipated loss of the *tert*-butyl group. In summary, the bis[2-(trialkylsilyl)ethyl] N,N-dialkylphosphoramidites **6a**, **b** and **7a**, **b** have been used to phosphorylate a range of alcohols. Both of the 2-(trialkylsilyl) ethyl groups on the triesters **9** could not be removed under very mild conditions, however in the presence of aqueous hydrofluoric acid in MeCN the monoesters 11 were formed in quantitative yields.

Experimental

Instrumentation, reagent suppliers and techniques were as previously described.⁷ FAB mass spectra were recorded with a nitrobenzyl alcohol matrix, while CI mass spectra were recorded with NH₃ as carrier gas. NMR spectra were recorded on a Bruker AC-250 spectrometer with field strengths of 250.1 (¹H), 101.3 (³¹P) and 62.9 MHz (¹³C). N,N-Diisopropyl-phosphorochloridite **5a**²⁵ and N,N-diethylphosphorochloridite **5b**¹⁰ were prepared from phosphorus trichloride and 2 equiv. of the appropriate amine using published procedures.

Bis[2-(trimethylsilyl)ethyl] N,N-Diisopropylphosphoramidite 7a.—A solution of 2-(trimethylsilyl)ethanol (1.12 g, 9.45 mmol) and triethylamine (0.956 g, 1.32 cm³, 9.45 mmol) in diethyl ether (20 cm³) was added dropwise over 10 min to a stirred solution of N,N-diisopropylphosphorochloridite (0.955 g, 4.725 mmol) in diethyl ether (10 cm^3) at $-78 \text{ }^\circ\text{C}$ under an atmosphere of argon. After 4 h at -78 °C, the insoluble material was filtered off and washed with diethyl ether. The filtrate was concentrated under reduced pressure and then subjected to purification by flash column chromatography eluting with hexane-triethylamine (9:1), $R_f 0.50$, which gave the title compound as a colourless oil $(0.18 \text{ g}, 16\%); \delta_{\text{H}}(\text{CDCl}_3) 0.13 (18 \text{ H}, \text{s}, \text{SiMe}_3), 0.9-1.1 (4 \text{ H}, \text{s})$ m, OCH₂CH₂Si), 1.24 (12 H, d, J_{HH} 6.8, Me₂CH), 3.4–3.6 (2 H, m, Me₂CH) and 3.6–3.9 (4 H, m, OCH₂CH₂Si); $\delta_{\rm C}$ –1.5 (s, $SiMe_3$, 20.0 (d, J_{PC} 6.7, OCH₂CH₂Si), 24.5 (d, J_{PC} 7.2, Me_2 CH), 42.6 (d, J_{PC} 12.2, Me₂CH) and 60.6 (d, J_{PC} 18.4, OCH₂CH₂Si); $\delta_{\rm P}$ 142.9 (s).

The following compounds were prepared from the appropriate N,N-dialkylphosphorochloridite **5a**, **b** and the appropriate 2-(trialkylsilyl)ethanol using a method similar to that described above.

Bis[2-(trimethylsilyl)ethyl] N,N-diethylphosphoramidite 7b. Purification by flash column chromatography not required, (88%), $\delta_{\rm H}$ (CDCl₃) 0.02 (18 H, s, SiMe₃), 0.9–1.1 (4 H, m, OCH₂CH₂Si), 1.03 (6 H, t, J_{HH} 7.1, CH₃CH₂N), 3.04 (4 H, dq, J_{PH} 9.1, J_{HH} 7.1, CH₃CH₂N) and 3.6–3.7 (4 H, m, OCH₂CH₂Si); $\delta_{\rm C}$ – 1.1 (s, SiMe₃), 15.4 (d, J_{PC} 6.2, CH₃CH₂N), 20.4 (d, J_{PC} 2.9, OCH₂CH₂Si), 37.6 (d, J_{PC} 20.4, CH₃CH₂N) and 60.9 (d, J_{PC} 16.8, OCH₂CH₂Si); $\delta_{\rm P}$ 145.3 (s).

Bis[2-(methyldiphenylsilyl)ethyl] N,N-diisopropylphosphoramidite 6a. $R_{\rm f}$ (hexane–ethyl acetate–triethylamine, 8:2:1) 0.56, (60%), $\delta_{\rm H}$ (CDCl₃) 0.55 (6 H, s, SiMe), 1.12 (12 H, d, $J_{\rm HH}$ 6.8, Me_2 CH), 1.5–1.6 (4 H, m, OCH₂CH₂Si), 3.4–3.6 (2 H, m, Me₂CH), 3.6–3.8 (4 H, m, OCH₂CH₂Si) and 7.3–7.5 (20 H, m, Ph); $\delta_{\rm C}$ – 3.6 (s, SiMe), 18.3 (d, $J_{\rm PC}$ 6.4, OCH₂CH₂Si), 24.8 (d, $J_{\rm PC}$ 7.2, Me_2 CH), 43.0 (d, $J_{\rm PC}$ 12.2, Me₂CH), 60.7 (d, $J_{\rm PC}$ 18.5, OCH₂CH₂Si), 128.2, 129.6, 134.7 and 136.9; $\delta_{\rm P}$ 143.3 (s); m/z(FAB) 514 [HP(OCH₂CH₂SiPh₂Me)₂, 80%], 500 (5), 457 (11), 344 (16), 197 (MePh₂Si⁺, 100) and 185 (7) (molecular ion not observed).

Bis[2-(methyldiphenylsilyl)ethyl] N,N-diethylphosphoramidite **6b**. $R_{\rm f}$ (hexane-ethyl acetate-triethylamine, 4:1:0.2) 0.42, (68%); $\delta_{\rm H}$ (CDCl₃) 0.55 (6 H, s, SiMe), 0.96 (6 H, t, $J_{\rm HH}$ 9.7, CH₃CH₂N), 1.5-1.6 (4 H, m, OCH₂CH₂Si), 2.93 (4 H, dq, $J_{\rm PH}$ 9.3, $J_{\rm HH}$ 7.1, CH₃CH₂N), 3.6-3.8 (4 H, m, OCH₂CH₂Si) and 7.3-7.5 (m, 20 H, Ph); $\delta_{\rm C}$ - 4.0 (s, SiMe), 14.9 (s, CH₃CH₂N), 17.9 (d, $J_{\rm PC}$ 5.7, OCH₂CH₂Si), 37.2 (d, $J_{\rm PC}$ 20.0, CH₃CH₂N), 60.2 (d, $J_{\rm PC}$ 16.7, OCH₂CH₂Si), 127.8, 129.3, 134.4 and 136.6; $\delta_{\rm P}$ 145.4 (s, ¹H decoupled), (nonet, $J_{\rm PH}$ 8.6, ¹H coupled); m/z(CI) 586 (M + H⁺, 15%), 530 (37), 457 (23), 316 (33), 214 (47) and 74 (100) (Found: M + H⁺, 586.273. C₃₄H₄₅NO₂PSi₂ requires *M*, 586.273).

Bis[2-(trimethylsilyl)ethyl] Benzyl Phosphate 9a.--A solution of benzyl alcohol (0.153 g, 1.41 mmol) in tetrahydrofuran (2 cm^3) was added dropwise to a stirred solution of 1*H*-tetrazole (0.296 g, 4.23 mmol, 3 equiv.) and the phosphoramidite 7b (0.475 g, 1.41 mmol) in tetrahydrofuran (5 cm³) at room temp. under an argon atmosphere. After 30 min, the reaction mixture was cooled to -40 °C and a solution of MCPBA (0.243 g, 1.41 mmol) in dichloromethane (2 cm^3) was added. The reaction mixture was maintained at -40 °C for 30 min, after which time it was allowed to warm to room temp. and then stirred for a further 1 h. Diethyl ether (40 cm³) was added and the solution was washed with aqueous sodium metabisulfite (5% w/v, 2×20 cm^3) and then with aqueous sodium hydrogen carbonate (5%) w/v, 2 × 20 cm³). After drying (MgSO₄), the ether layer was evaporated under reduced pressure to give a clear oil. The title compound (R_f 0.53) was separated from residual benzyl alcohol ($R_f 0.30$) by flash column chromatography eluting with hexane-ethyl acetate-triethylamine (8:2:1), 0.28 g (0.72 mmol, 51%); $\delta_{\rm H}$ (CDCl₃) 0.00 (18 H, s, SiMe₃), 1.0-1.1 (4 H, m, OCH₂CH₂Si), 4.0-4.1 (4 H, m, OCH₂CH₂Si), 5.05 (2 H, d, J_{PH} 8.2, PhCH₂) and 7.3–7.4 (5 H, m, Ph); $\delta_{\rm C}$ – 1.6 (s, SiMe₃), 19.4 (d, J_{PC} 5.8, OCH_2CH_2Si), 66.1 (d, J_{PC} 6.3, OCH_2CH_2Si), 68.8 (d, J_{PC} 5.5, PhCH₂), 127.8, 128.3, 128.5 and 136.1; δ_{P} -0.83 (s).

Bis[2-(methyldiphenylsilyl)ethyl] Benzyl Phosphate 9b.--A solution of benzyl alcohol (0.296 g, 2.74 mmol) in dichloromethane (2 cm³) was added to a solution of the phosphoramidite **6b** (1.76 g, 3.02 mmol) in dichloromethane (20 cm³). The reaction mixture was stirred at room temp. for 30 min, after which time a solution of 1H-tetrazole (0.211 g, 3.02 mmol) in acetonitrile (2 cm³) was added. After 1 h, the reaction was cooled to 0 °C and a solution of MCPBA (0.196 g, 3.02 mmol) in dichloromethane (2 cm³) was added. After 4 h at room temp., the reaction mixture was concentrated under reduced pressure. Flash column chromatography of the residue eluting with hexane-ethyl acetate-triethylamine (8:2:1) separated a trace of benzyl alcohol ($R_f 0.18$) from the title compound ($R_f 0.36$) (0.811 g, 1.27 mmol, 42%); $v_{max}(\text{thin film})/\text{cm}^{-1}$ 1257 (P=O); $\delta_{\rm H}({\rm CDCl}_3)$ 0.50 (6 H, s, SiMe), 1.5–1.6 (4 H, m, OCH₂CH₂Si), 4.0-4.1 (4 H, m, OCH₂CH₂Si), 4.95 (2 H, d, J_{PH} 8.2, PhCH₂) and 7.3–7.5 (25 H, m, Ph); δ_c –4.1 (s, SiMe), 17.4 (d, J_{PC} 5.7, OCH₂CH₂Si), 65.7 (d, J_{PC} 6.3, OCH₂CH₂Si), 68.9 (d, J_{PC} 5.6, PhCH₂), 127.8, 128.0, 128.4, 128.5, 129.5, 134.3 and 135.6 (one aromatic carbon overlapping); $\delta_P = -1.10$ (s, ¹H decoupled), (septet, J_{PH} 7.6, ¹H coupled); m/z (FAB) 425 (10%), 335 (54) and 197 (MePh₂Si⁺, 100) (molecular ion not found).

The following compounds were prepared from the appropriate bis[2-(trialkylsilyl)ethyl] N,N-dialkylphosphoramidite and the appropriate alcohol using a method similar to that described above.

Bis[2-(trimethylsilyl)ethyl] 4-phenylbutan-2-yl phosphate 9c. R_f (hexane-ethyl acetate-triethylamine, 8:2:1) 0.32, 60%; v_{max} (thin film)/cm⁻¹ 1252 (P=O); δ_{H} (CDCl₃) 0.01 (18 H, s, SiMe₃), 1.0-1.1 (4 H, m, OCH₂CH₂Si), 1.33 (3 H, d, J_{HH} 6.2, CH₃CH), 1.8-2.0 (2 H, m, PhCH₂CH₂), 2.6-2.8 (2 H, m, PhCH₂CH₂), 4.0-4.2 (4 H, m, OCH₂CH₂Si), 4.4-4.5 (1 H, septet, J_{HH} = J_{PH} = 6.3, CH₃CH) and 7.1-7.3 (5 H, m, Ph); δ_{C} - 1.5 (SiMe₃), 19.51 (d, J_{PC} 6.0, OCH₂CH₂Si), 19.52 (d, J_{PC} 5.9, OCH₂CH₂Si), 21.6 (d, J_{PC} 2.8, CH₃CH), 31.5 (PhCH₂CH₂), 39.2 (d, J_{PC} 6.3, OCH₂CH₂Si), 75.1 (d, J_{PC} 6.2, CH₃CH), 125.9, 128.3, 128.4 and 141.8; δ_{P} - 1.50 (s, ¹H decoupled), (sextet, J_{PH} 6.5, ¹H coupled); m/z (FAB) 453 (M + Na⁺, 15%), 375 (10), 315 (27), 243 (100), 227 (9) and 211 (16) (Found: M + Na⁺, 453.200. C₂₀H₃₉NaO₄PSi₂ requires 453.202).

Bis[2-(methyldiphenylsilyl)ethyl] 4-phenylbutan-2-yl phosphate 9d. R_f (hexane-ethyl acetate-triethylamine, 8:2:1) 0.35, 64% (Found: C, 70.6; H, 6.9. $C_{40}H_{47}O_4PSi_2$ requires C, 70.78; H, 6.98%); ν_{max} (thin film)/cm⁻¹ 1259 (P=O); δ_{H} (CDCl₃) 0.56 (6 H, s, SiMe), 1.26 (3 H, d, J_{HH} 6.2, CH_3 CH), 1.6–1.7 (4 H, m, OCH₂CH₂Si), 1.8–2.0 (2 H, m, PhCH₂CH₂), 2.5–2.7 (4 H, m, PhCH₂CH₂), 4.1–4.2 (4 H, m, OCH₂CH₂Si), 4.42 (1 H, septet, $J_{PH} = J_{HH} = 5.9$, CH₃CH) and 7.1–7.5 (25 H, m, Ph); δ_C – 4.0 (SiMe), 17.5 (d, J_{PC} 3.1, OCH₂CH₂Si), 21.5 (d, J_{PC} 2.8, CH₃CH), 31.4 (PhCH₂CH₂), 39.1 (d, J_{PC} 6.5, PhCH₂CH₂), 65.4 (d, J_{PC} 6.2, OCH₂CH₂Si), 75.2 (d, J_{PC} 6.2, CH₃CH), 126.8, 128.0, 128.2, 129.6, 134.3, 136.3 and 142.4 (one aromatic carbon overlapping); δ_P – 1.71 (s, ¹H decoupled), (sextet, J_{PH} 7.1, ¹H coupled).

Bis[2-(methyldiphenylsilyl)ethyl] phenethyl phosphate 9e. $R_{\rm f}$ (hexane-ethyl acetate-trimethylamine, 8:2:1) 0.60, 69%; $v_{\rm max}$ (thin film)/cm⁻¹ 1272 (P=O); $\delta_{\rm H}$ (CDCl₃) 0.55 (6 H, s, SiMe), 1.5-1.6 (4 H, m, OCH₂CH₂Si), 2.88 (2 H, t, J_{HH} 7.0, PhCH₂), 4.0-4.1 (6 H, m, OCH₂CH₂Si, PhCH₂CH₂) and 7.1-7.4 (25 H, m, Ph); $\delta_{\rm C}$ -4.1 (SiMe), 17.4 (d, J_{PC} 5.2, OCH₂CH₂Si), 36.7 (d, J_{PC} 7.2, PhCH₂), 65.6 (d, J_{PC} 6.2, OCH₂CH₂Si), 67.7 (d, J_{PC} 5.7, PhCH₂CH₂), 126.6, 128.0, 128.4, 128.9, 129.5, 134.3, 135.6 and 137.2; $\delta_{\rm P}$ -1.23 (s, ¹H decoupled), (septet, J_{PH} 7.4, ¹H coupled); *m*/z (FAB) 335 (48%), 242 (10), 197 (MePh₂Si⁺, 100) and 105 (52) (molecular ion not found).

Bis[2-(methyldiphenylsilyl)ethyl] methyl phosphate **9f**. $R_{\rm f}$ (hexane-ethyl acetate-triethylamine, 8:2:1) 0.41, 50% (elemental analysis not correct: Found: C, 62.7; H, 5.85. $C_{31}H_{37}O_4PSi_2$ requires C, 66.43; H, 6.65%); $\delta_{\rm H}$ (CDCl₃) 0.58 (6 H, s, SiMe), 1.6–1.7 (4 H, m, OCH₂CH₂Si), 3.62 (3 H, d, J_{PH} 11.1, CH₃O), 4.1–4.2 (4 H, m, OCH₂CH₂) and 7.3–7.5 (20 H, m, Ph); $\delta_{\rm C}$ – 4.1 (SiMe), 17.4 (d, J_{PC} 5.7, CH₂Si), 53.9 (d, J_{PC} 6.0, CH₃O), 65.6 (d, J_{PC} 6.2, OCH₂CH₂Si), 127.9, 128.0, 129.5 and 134.3; $\delta_{\rm P}$ – 1.05 (s, ¹H decoupled).

Bis[2-(methyldiphenylsilyl)ethyl] tert-butyl phosphate **9g**. R_f (hexane–ethyl acetate–triethylamine, 8:2:1) 0.35, 83% (elemental analysis not correct: Found: C, 65.0; H, 7.3. C₃₄H₄₃O₄PSi₂ requires C, 67.76; H, 7.19%); v_{max} (thin film)/cm⁻¹ 1261 (P=O); $\delta_{\rm H}$ (CDCl₃) 0.57 (6 H, s, SiMe), 1.40 (9 H, s, Bu'), 1.6–1.7 (4 H, m, OCH₂CH₂Si), 4.0–4.1 (4 H, m, OCH₂CH₂Si) and 7.3–7.5 (20 H, m, Ph); $\delta_{\rm C}$ –4.09 (SiMe), 17.4 (d, J_{PC} 4.8, OCH₂CH₂Si), 29.8 (d, J_{PC} 4.3, Me₃C), 65.0 (d, J_{PC} 6.2, OCH₂CH₂Si), 82.5 (d, J_{PC} 7.1, Me₃C), 128.0, 129.2, 134.3 and 135.7; $\delta_{\rm P}$ – 1.55 (s, ¹H decoupled) (pentet, J_{PH} 7.4, ¹H coupled).

2,3,4,5,6-Penta-O-benzyl-myo-inositol 1-{bis[2-(methyldiphenylsilyl)ethyl]phosphate} **9h**. $R_{\rm f}$ (hexane–ethyl acetate–triethylamine, 8:2:1) 0.20, 46% (elemental analysis not correct: Found: C, 67.8; H, 6.6. $C_{71}H_{75}O_9PSi_2$ requires C, 73.56; H, 6.52%); $v_{\rm max}$ (thin film)/cm⁻¹ 1257 (P=O); $\delta_{\rm H}$ (CDCl₃) 0.49 (6 H, s, SiMe), 1.5–1.6 (4 H, m, CH₂Si), 3.45 (2 H, t, $J_{\rm HH}$ 8.6, 3-H and 5-H), 4.0–4.2 (7 H, m, 2 OCH₂CH₂Si, 1-H, 4-H and 6-H), 4.29 (1 H, s, 2-H), 4.7–4.9 (10 H, m, OCH₂Ph) and 7.2–7.5 (45 H, m, Ph); $\delta_{\rm c}$ – 4.16 (SiMe), 17.5 (d, $J_{\rm PC}$ 4.1, CH₂Si), 65.8–65.9 (2 overlapping d, OCH₂CH₂Si), 72.6, 75.0, 75.3, 75.8, 75.9 (PhCH₂), 78.3 (d, $J_{\rm PC}$ 6.1), 80.0 (d, $J_{\rm PC}$ 6.9), 80.3, 81.2, 83.0 (inositol CH, one CH overlapping or masked by CDCl₃), 127.4, 127.5, 127.6, 127.8, 127.9, 128.1, 128.3, 129.5, 134.2, 135.3, 135.4, 138.4, 138.4, 138.5 and 138.7; $\delta_{\rm P}$ – 1.38 (s).

Attempted Deprotection of Bis[2-(methyldiphenylsilyl)ethyl] Benzyl Phosphate **9b** with Tetrabutylammonium Fluoride in THF.—TBAF (0.128 g, 0.41 mmol) in THF (1 cm³) was added over 5 min to a stirred solution of **9b** (0.129 g, 0.203 mmol) in THF (1 cm³). After 24 h at room temp., the solvent was evaporated under reduced pressure and portions of ethanol (2 cm³) were added and removed by evaporation several times. An aqueous solution of ammonia (1 cm³) was added to give a precipitate of the diester **10b**, $\delta_{\rm H}(\rm CDCl_3)$ 0.41 (3 H, s, SiMe), 1.4–1.5 (2 H, m, OCH₂CH₂Si), 3.9–4.0 (2 H, m, OCH₂CH₂Si), 4.92 (2 H, d, J_{PH} 8.2, PhCH₂O) and 7.1–7.4 (15 H, m, Ph); δ_{P} 0.13 (pentet, J_{PH} 7.2, ¹H coupled).

Attempted Deprotection of Bis[2-(methyldiphenylsilyl)ethyl] Benzyl Phosphate **9b** with Tetrabutylammonium Fluoride in DMSO.—A solution of TBAF (0.049 g, 0.156 mmol) in DMSO (1 cm³) was added to a solution of **9b** (0.050 g, 0.078 mmol) in DMSO (1 cm³). The mixture was stirred at 70 °C for 2 h, under an argon atmosphere. The ³¹P NMR spectrum of the crude reaction mixture was consistent with the diester **10b**, $\delta_P - 0.85$ (pentet, J_{PH} 6.3, ¹H coupled, 90%). The reaction was left at 70 °C for a further 16 h which gave monoester **11c**, $\delta_P - 0.48$ (t, J_{PH} 6.0, ¹H coupled), together with 30% inorganic phosphate, δ_P 0.03 (s, ¹H coupled).

Attempted Deprotection of Bis[2-(methyldiphenylsilyl)ethyl] Phenethyl Phosphate 9e with Ammonium Fluoride.—A solution of ammonium fluoride (0.045 g, 1.21 mmol) in MeOH (1 cm³) was added to a stirred solution of 9e (0.057 g, 0.088 mmol) in MeOH (1 cm³). The mixture was stirred under an argon atmosphere at 60 °C for 72 h, after which the solvent was removed under reduced pressure and the residue treated with aqueous ammonia (1 cm³) to give a white precipitate, the ³¹P NMR spectrum of which was consistent with the diester 10e, $\delta_P(CD_3OD)$ 2.61 (pentet, J_{PH} 6.3, ¹H coupled).

Phenethyl Phosphate (Free Acid) 11a.—Trifluoroacetic acid (0.035 g, 0.308 mmol) was added to a stirred solution of 9e (0.050 g, 0.077 mmol) in THF (1 cm³). The reaction mixture was stirred at room temp. under an argon atmosphere for 24 h. The solvent was evaporated under reduced pressure to give a white solid which was washed with chloroform. Deprotection was quantitative, shown by ³¹P NMR spectroscopy, to give the title compound, $\delta_{\rm H}(\rm D_2O)$ 2.98 (2 H, t, $J_{\rm HH}$ 6.9, PhCH₂), 4.07 (2 H, dt, $J_{\rm PH} = J_{\rm HH} = 6.9$, CH₂CH₂O) and 7.3–7.5 (5 H, m, Ph); $\delta_{\rm C}$ 33.7 (d, $J_{\rm PC}$ 6.9, PhCH₂), 63.1 (d, $J_{\rm PC}$ 5.2, CH₂O), 123.9, 126.0, 126.5 and 136.2; $\delta_{\rm P}$ 1.68 (t, $J_{\rm PH}$ 6.4, ¹H coupled).

Deprotections were attempted on the following compounds using a method analogous to that described above.

Attempted deprotection of bis[2-(methyldiphenylsilyl)ethyl] 4-phenylbutan-2-yl phosphate **9d**. The ³¹P NMR spectrum of the aqueous layer showed no phosphorus-containing material, whereas the chloroform layer gave $\delta_{\rm P} = 1.62$ (sextet, $J_{\rm PH}$ 6.7, ¹H coupled) consistent with the triester **9d**.

Attempted deprotection of bis[2-(methyldiphenylsilyl)ethyl] benzyl phosphate **9b**. ³¹P NMR spectroscopy of the aqueous layer showed a small amount of the monoester **11c**, δ_P 1.00 (t, J_{PH} 7.0, ¹H coupled). The chloroform layer contained the majority of the material, which proved to be starting material, $\delta_P - 1.07$ (sept, J_{PH} 7.7, ¹H coupled).

Phenethyl Phosphate (Ammonium Salt) 11a.--Hydrofluoric acid (40% aqueous solution; 0.034 g, 1.702 mmol) was added to a stirred solution of the triester 9e (0.074 g, 0.114 mmol) in MeCN (1 cm³). The reaction mixture was stirred at 40 °C under an argon atmosphere for 24 h. A solution of aqueous ammonia (1 cm³) was added and the resultant ammonium fluoride salt was filtered off. The solvent was evaporated under reduced pressure to give the title compound, quantitatively by ³¹P NMR spectroscopy, as a white solid, $\delta_{\rm H}(D_2O)$ 2.59 (2 H, t, $J_{\rm HH}$ 6.8, PhCH₂), 3.70 (2 H, dt, $J_{\rm PH} = J_{\rm HH} = 6.8$, CH₂CH₂O) and 7.0-7.1 (5 H, m, Ph); $\delta_{\rm C}$ 33.6 (d, $J_{\rm PC}$ 7.1, PhCH₂), 63.3 (d, $J_{\rm PC}$ 4.3, CH₂O), 123.8, 125.9, 126.4 and 135.9; $\delta_{\rm P}$ 1.13 (t, $J_{\rm PH}$ 7.0, ¹H coupled); m/z (FAB) peaks included 171 (37%), 203 (M + H, 15), 220 (M + NH₄, 17) and 226 (M + Na, 5).

The following compounds were prepared by treatment of the appropriate triester with 15 equiv. of hydrofluoric acid using a method similar to that described above.

4-Phenylbutan-2-yl Phosphate (Ammonium Salt) 11b was prepared quantitatively from triester 9c, $\delta_{\rm H}(\rm D_2O)$ 1.33 (3 H, d, $J_{\rm HH}$ 6.2, CH_3CH), 1.9–2.0 (2 H, m, CH_2CH_2CH), 2.7–2.8 (2 H, m, Ph CH_2), 4.3–4.4 (1 H, m, OCH) and 7.3–7.5 (5 H, m, Ph); $\delta_{\rm C}$ 23.4 (CH_3CH), 33.5 (s, Ph CH_2), 41.5 (d, $J_{\rm PC}$ 5.9, CH CH_2CH), 75.4 (d, $J_{\rm PC}$ 5.7, OCH), 128.4, 130.9, 131.1 and 145.1; $\delta_{\rm P}$ 2.43 (d, $J_{\rm PH}$ 7.2, ¹H coupled); m/z (FAB) peaks included 171 (100%), 231 (M + H, 50), 248 (M + NH₄, 30), 324 (30), 461 (2M + H, 45) and 478 (2M + NH₄, 10).

4-Phenylbutan-2-yl Phosphate (Ammonium salt) 11b was prepared from 9d, reaction temperature 40 °C. The data obtained were as described for the above experiment.

Benzyl Phosphate (Ammonium Salt) **11c** was prepared from **9b**, reaction temperature 40 °C, $\delta_{\rm H}(D_2O)$ 4.82 (2 H, d, $J_{\rm PH}$ 8.3, PhCH₂) and 7.3–7.4 (5 H, m, Ph); $\delta_{\rm C}$ 65.0 (d, $J_{\rm PC}$ 5.2), 125.2, 125.7, 126.1 and 135.0 (d, $J_{\rm PC}$ 7.1); $\delta_{\rm P}$ –0.48 (t, $J_{\rm PH}$ 6.0, ¹H coupled); m/z (FAB) peaks included 171 (100%), 189 (M + H, 23), 211 (M + Na, 40), 324 (30), 377 (2M + H, 10) and 399 (2M + Na, 13).

Methyl Phosphate (Free Acid) 11d was prepared from 9f, reaction temperature 40 °C. After 24 h, the solvent was evaporated under reduced pressure and the residue was redissolved in CD₃CN, $\delta_{\rm H}$ (CD₃CN) 3.59 (3 H, d, $J_{\rm PH}$ 9.5, Me); $\delta_{\rm C}$ 54.8 (d, $J_{\rm PC}$ 5.7, Me); $\delta_{\rm P}$ 5.47 (q, $J_{\rm PH}$ 9.9, ¹H coupled).

2,3,4,5,6-*Penta*-O-*benzyl*-myo-*inositol* 1-(*dihydrogen phosphate*) **11e** was prepared from **9h**, reaction temperature 40 °C. After 24 h, the solvent was evaporated under reduced pressure and the residue was redissolved in CD₃CN, $\delta_{\rm H}$ (CD₃CN) 3.39 (2 H, t, $J_{\rm HH}$ 9.0, 3-H and 5-H), 4.0–4.2 (14 H, m, OCH₂Ph, 2-H, 1-H, 4-H and 6-H) and 7.2–7.6 (25 H, m, Ph); $\delta_{\rm C}$ 73.1, 73.6 (d, $J_{\rm PC}$ 3.4), 76.2, 76.4 (d, $J_{\rm PC}$ 6.1), 76.7, 78.3 (inositol CH), 82.0, 82.2, 83.2, 84.0, 84.6 (PhCH₂), 128.7, 128.8, 129.2, 129.3, 129.4, 129.6, 129.7, 129.75, 129.8, 129.9, 129.95, 130.0, 130.5 and 135.3 (aromatics); $\delta_{\rm P}$ 4.69 (d, $J_{\rm PH}$ 7.9, ¹H coupled).

Attempted deprotection of bis[2-(methyldiphenylsilyl)ethyl] tert-butyl phosphate **9g**. After 24 h the solvent was evaporated under reduced pressure and the residue was redissolved in CD₃CN. The ¹H NMR spectrum showed loss of the Bu' group as 2-methylpropene [$\delta_{\rm H}$ 1.73 (6 H, s, Me) and 4.67 (2 H, s, =CH₂)] and Bu'OH [$\delta_{\rm H}$ 1.20 (s, Bu')].

Deprotection Studies on Phosphates 9b, c, f, h by ¹H and ³¹P NMR Spectroscopy.---The phosphates 9b, c, f, h (20 µmol) were dissolved in CD₃CN (0.5 cm³) and 15 equiv. of 40% aqueous HF in acetonitrile (0.5 cm^3) was added. For 9c the sample in the NMR tube was incubated at 25 °C, whereas for 9b, f, h the reaction temperature was 40 °C. The reactions were followed by recording either a ¹H or ³¹P NMR spectrum every 30 min. Reaction kinetics were analysed by integration of the $PhCH_2OP$ peaks for the triester, diester and monoester of the phosphate 9b and by integration of the ethene and trialkylsilyl fluoride by-product peaks. The triester 9f [$\delta_{\rm H}$ included 3.57 (d, $J_{\rm PH}$ 11.1, OMe)] decomposed to give the diester 10f [$\delta_{\rm H}$ included 3.62 (d, J_{PH} 11.2, OMe)] which, in turn, was degraded to the monoester 11d [$\delta_{\rm H}$ included 3.69 (d, $J_{\rm PH}$ 11.3, OMe)]. The triester **9h** ($\delta_{\rm P}$ - 1.89) decomposed to give the diester **10h** $(\delta_{\rm P} - 1.73)$ and ultimately the monoester 11e $(\delta_{\rm P} - 1.05)$. The triester 9c ($\delta_{\rm P}$ - 1.63) decomposed to give the diester 10c $(\delta_{\rm P} - 1.17)$, which degraded to the monoester 11b ($\delta_{\rm P} - 0.50$).

Acknowledgements

We thank Dr. W. J. Irwin for assistance with the kinetic analysis, SERC and Aston Molecules for a Total-Technology Studentship (K. R.), the Lister Institute for a fellowship (S. F.) and the SERC mass spectrometry service at Swansea for mass spectral analyses.

References

- A preliminary account of this work was presented at the Royal 1 Society of Chemistry Autumn Meeting, University of Warwick, September 1993.
- 2 L. A. Slotin, Synthesis, 1977, 737.
- 3 C. B. Reese and J. G. Ward, Tetrahedron Lett., 1987, 28, 2309.
- 4 E. Uhlmann and J. Engels, Tetrahedron Lett., 1986, 27, 1023.
- 5 J. W. Perich and R. B. Johns, Tetrahedron Lett., 1987, 28, 101.
- 6 K.-L. Yu and B. Fraser-Reid, *Tetrahedron Lett.*, 1988, 29, 979.
 7 W. Thomson, D. Nicholls, W. J. Irwin, J. S. Al-Mushadani, S. Freeman, A. Karpas, J. Petrik, N. Mahmood and A. J. Hay, J. Chem. Soc., Perkin Trans. 1, 1993, 1239.
- 8 W. Bannwarth and A. Trzeciak, Helv. Chim. Acta, 1987, 70, 175.
- 9 W. Bannwarth and E. Küng, Tetrahedron Lett., 1989, 30, 4219.
- 10 J. W. Perich and R. B. Johns, Synthesis, 1988, 142.
- 11 D. Coe, S. L. Flitsch, H. Hilpert, M. Liebster, S. M. Roberts and N. J. Turner, *Chem. Ind.*, 1989, 724.
- 12 Y. Watanabe, Y. Komoda, K. Ebisuya and S. Ozaki, Tetrahedron Lett., 1990, 31, 255.
- 13 S. Ozaki, Y. Kondo, N. Shiotani, T. Ogasawara and Y. Watanabe, J. Chem. Soc., Perkin Trans. 1, 1992, 729.
- 14 M. Lalonde and T. H. Chan, Synthesis, 1985, 817.

- 15 V. T. Ravikumar, H. Sasmor and D. L. Cole, Bioorg. Med. Chem. Lett., 1993, 3, 2637.
- 16 J.E. Celebuski, C. Chan and R.A. Jones, J. Org. Chem., 1992, 57, 5535.
- 17 H.-G. Chao, M. S. Bernatowicz, C. E. Klimas and G. R. Matsueda, Tetrahedron Lett., 1993, 34, 3377.
- 18 G. R. Baker, D. C. Billington and D. Gani, Tetrahedron, 1991, 47, 3895.
- 19 S. Honda and T. Hata, Tetrahedron Lett., 1981, 22, 2093.
- 20 T. Wada and M. Sekine, Tetrahedron Lett., 1994, 35, 757.
- 21 A. Sawabe, S. A. Filla and S. Masamune, Tetrahedron Lett., 1992, 33, 7685
- 22 B. H. Lipshutz, J. J. Pegram and M. C. Morey, Tetrahedron Lett., 1981, **22**, 4603.
- 23 W. Zhang and M. J. Robins, Tetrahedron Lett., 1992, 33, 1177. 24 W. J. Irwin, Kinetics of Drug Decomposition: BASIC Computer
- Solutions, Elsevier, Amsterdam, 1990, p. 75.
- 25 T. Tanaka, S. Tamatsukuri and M. Ikehara, Tetrahedron Lett., 1986, 27, 199.

Paper 4/05790B Received 22nd September 1994 Accepted 26th October 1994