Use of Bis[2-(trialkylsilyl)ethyl] N,N-Dialkylphosphoramidites for the Synthesis of Phosphate Monoesters ${ }^{1}$

Kenneth C. Ross, ${ }^{a}$ Daniel L. Rathbone, ${ }^{\boldsymbol{b}}$ William Thomson ${ }^{b}$ and Sally Freeman**a
a Department of Pharmaceutical and Biological Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
${ }^{b}$ Aston Molecules, Aston Science Park, Birmingham B7 4EJ. UK

The bis[2-(trimethylsilyl)ethyl] N,N-dialkylphosphoramidites 7a and band bis[2-(methyldiphenylsilyl)ethyl] N, N-dialkylphosphoramidites $6 \mathbf{a}$ and \mathbf{b} have been prepared by reaction of the N,Ndialkylphosphorochloridites $5 \mathbf{a}$ and \mathbf{b} with the appropriate 2 -(trialkylsilyl)ethanol. In the presence of 1 H -tetrazole, the phosphoramidites $\mathbf{6 a}$, b and $\mathbf{7 a}, \mathbf{b}$ phosphorylated $\mathrm{MeOH}, \mathrm{PhCH}_{2} \mathrm{OH}$, $\mathrm{PhCH}_{2} \mathrm{CH}_{2} \mathrm{OH}, \mathrm{Me}\left(\mathrm{PhCH}_{2} \mathrm{CH}_{2}\right) \mathrm{CHOH}, 2,3,4,5,6$-penta-o-benzyl-myo-inositol and $\mathrm{Bu}^{+} \mathrm{OH}$, to give the phosphites $8 \mathbf{a}-\mathrm{h}$. Without isolation, these were oxidised to the corresponding phosphate triesters $\mathbf{9 a - h}$ with m-chloroperoxybenzoic acid. Treatment of the triesters $9 \mathbf{a}$-h with tetrabutylammonium fluoride removes only one 2-(trialkylsilyl)ethyl group to give the diesters 10a-h, whereas treatment with a solution of hydrofluoric acid in acetonitrile-water gives the phosphate monoesters $11 \mathbf{a}-\mathbf{e}$.

The P^{111} phosphoramidites 1 have recently joined the P^{v} phosphorylation strategies ${ }^{2}$ as popular reagents for the synthesis of phosphate monoesters. The phosphoramidites 1 react with a range of alcohols in the presence of $1 H$-tetrazole to give the phosphites 2 , which are readily oxidised with, for example, m-chloroperoxybenzoic acid (MCPBA) or sulfur to give the triesters $3(X=O, S)$. Removal of the protecting groups from 3 gives rise to the phosphate or thiophosphate monoesters 4 (Scheme 1). Several phosphoramidite reagents have been developed, each requiring a method of deprotection. Reese and Ward ${ }^{3}$ have used bis(2-cyanoethyl) N, N-diethylphosphoramidite la in their synthesis of myo-inositol phosphates and Uhlmann and Engels ${ }^{4}$ have used bis(2cyanoethyl) and bis[2-(p-nitrophenyl)ethyl] N, N-diisopropylphosphoramidites $\mathbf{1 b}$ and \mathbf{c} in their synthesis of nucleotides. The 2-cyanoethyl and 2 -(nitrophenyl)ethyl groups are readily removed by a β-elimination catalysed by base. Two research groups ${ }^{5,6}$ have evaluated the use of dibenzyl N, N-dialkylphosphoramidites 1d, e, the benzyl substituents from the phosphate triester products being removed by hydrogenolysis. We have recently used the bis(p-acyloxybenzyl) N, N-diisopropylphosphoramidites if to phosphorylate AZT, the p-acyloxybenzyl groups from the resulting triesters being removed either by chemical or esterase-catalysed hydrolyses. ${ }^{7}$ Bannwarth and co-workers ${ }^{8,9}$ have developed the bis(allyl) N, N-diisopropylphosphoramidites $\mathbf{1 g}$, the allyl groups from the phosphate triesters being removed with $\left[\mathrm{Pd}^{0}\left(\mathrm{PPh}_{3}\right)_{4}\right]$. Di-tert-butyl N, N-diethylphosphoramidite $\mathbf{1 h}$ has also been utilised, ${ }^{10,11}$ the tert-butyl groups being removed by treatment with acid. Watanabe and co-workers ${ }^{12,13}$ have recently developed o phenylenedimethylene N, N-diethylphosphoramidite $1 \mathbf{i}$, the protecting group being removed by hydrogenolysis on $\mathrm{Pd}-\mathrm{C}$ or by reduction with sodium in liquid ammonia or sodium naphthalide in tetrahydrofuran.

Not all R^{3} groups of the phosphate or thiophosphate triesters 3 or monoesters 4 will be stable to the deprotection conditions, therefore other R^{2} groups which can be removed under mild conditions are of interest. Silicon-based protecting groups are used extensively because of the ease with which they are removed by fluoride ion. ${ }^{14}$ Derivatisation of phosphates with,

[^0]

Scheme 1
for example, 1,1,1,3,3,3-hexamethyldisilazane to give P - O SiMe_{3} esters is used for GLC and mass spectral analyses, however these esters are very unstable towards traces of moisture. In contrast, the $\mathrm{P}-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{SiR}_{3}$ group will be more stable, but should be readily cleaved by fluoride anion to give ethene and the corresponding trialkylsilyl fluoride. Very recently other groups have used 2-(methyldiphenylsilyl)ethyl bis(N, N-diisopropyl)phosphoramidite ${ }^{15}$ and 2-(trialkylsilyl)ethyl 2 -cyanoethyl N, N-diisopropylphosphoramidite ${ }^{16}$ for the phosphorylation of alcohols. Here, the phosphoramidites $\mathbf{6 a}, \mathbf{b}$ and $\mathbf{7 a}$, \mathbf{b} bearing the 2 -(methyldiphenylsilyl)ethyl and 2-(trimethylsilyl)ethyl groups, respectively, have been prepared and evaluated in the synthesis of phosphate monoesters. Since the completion of this study, Chao and co-workers ${ }^{17}$ have communicated the use of bis[2-(trimethylsilyl)ethyl] N, N diisopropylphosphoramidite 7a to phosphorylate a tyrosine residue on a protected peptide.

10
9

11
a $\mathrm{R}^{2}=\mathrm{PhCH}_{2} \mathrm{CH}_{2}$
bR ${ }^{2}=\mathrm{Me}\left(\mathrm{PhCH}_{2} \mathrm{CH}_{2}\right) \mathrm{CH}$
c $\mathrm{R}^{2}=\mathrm{PhCH}_{2}$ $\mathrm{dR}^{2}=\mathrm{Me}$
$\mathrm{eR}^{2}=2,3,4,5,6$-penta-o-benzyl-myo-inositol f $\mathrm{R}^{2}=$ calyculin A model

Scheme 2

Results and Discussion

Bis[2-(trialkylsilyl)ethyl] N, N-dialkylphosphoramidites $\mathbf{6 a}, \mathbf{b}$ and $7 \mathbf{a}, \mathbf{b}$ were prepared by treatment of the N, N-dialkylphosphorochloridite 5a, b with 2 equiv. of either 2 -(trimethylsilyl)ethanol or 2-(methyldiphenylsilyl)ethanol in the presence of triethylamine (Scheme 2). The phosphoramidites were purified by flash column chromatography and were characterised by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{31} \mathrm{P}$ NMR spectroscopy. In the presence of $1 H$ tetrazole, the phosphoramidites $6 \mathbf{a}, \mathbf{b}$ and $7 \mathbf{a}, \boldsymbol{b}$ were then used to phosphorylate methanol, the primary alcohols benzyl alcohol and 2 -phenylethanol, the secondary alcohols 4 -phenylbutan2 -ol and 2,3,4,5,6-penta-o-benzyl-myo-inositol, ${ }^{18}$ and tert-butyl alcohol to give the phosphites 8a-h. Without isolation, the phosphites were treated with MCPBA to give the phosphate triesters $9 \mathbf{a}-\mathrm{h}$ which were isolated as oils by flash column chromatography in yields of ca. 50% and were fully characterised by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{31} \mathrm{P}$ NMR spectroscopy and IR spectrometry. In many cases, the mass spectra (EI, CI or FAB) of these compounds failed to give a molecular ion, which is a ttributable to the ease with which the R^{1} Si group cleaves to give this fragment as the most abundant ion. In some cases the viscous oils also failed to give satisfactory elemental analysis data.
The deprotection of the $\mathrm{POCH}_{2} \mathrm{CH}_{2} \mathrm{SiR}_{3}$ group has
previously been achieved with tetrabutylammonium fluoride (TBAF). For example, this reagent has been used to remove a 2-(methyldiphenylsilyl)ethyl, ${ }^{19.15}$ 2-(triphenylsilyl)ethyl ${ }^{16}$ or 2-(trimethylsilyl)ethyl ${ }^{20}$ group from nucleotide analogues. Here it was established that only one 2-(methyldiphenylsily))ethyl group was removed from the triester $9 b$ with TBAF in either THF at room temperature or DMSO at $70^{\circ} \mathrm{C}$ to give the diester 10b. This result is an agreement with the recent findings of Sawabe and co-workers ${ }^{21}$ who reported mono deprotection of the phosphate triester $\mathbf{9 i}$ to the diester $\mathbf{1 0 i}$ with this reagent.
A solution of lithium tetrafluoroborate in acetonitrile has been used by Lipshutz and co-workers to remove a 2 (trimethylsilyl)ethyl group from a variety of carbohydrates. ${ }^{22}$ However, the deprotection of the phosphate triester 9c using this reagent was unsuccessful, giving rise, as judged by ${ }^{31} \mathrm{P}$ NMR spectroscopy, to a mixture of unidentified products.
Zhang and Robins ${ }^{23}$ used a solution of ammonium fluoride in methanol at $60^{\circ} \mathrm{C}$ to remove various silyl groups from protected nucleosides. Under these conditions only one silyl protecting group was removed from the phosphate triesters $9 \mathbf{c}$ and e to give the diesters $10 c$ and e.
A solution of trifluoroacetic acid in acetonitrile was used by Chao and co-workers to remove two 2 -(trimethylsilyl)ethyl

Fig. 1 Degradation profile of bis[2-(methyldiphenylsilyl)ethyl] benzyl phosphate $9 \mathbf{b}$ with 15 equiv. of aqueous hydrofluoric acid in acetonitrile at $40^{\circ} \mathrm{C}$. The reaction was monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy and the percentages of the triester ($9 \mathrm{~b}, \square$), diester ($\mathbf{1 0 b}, \boldsymbol{0}$) and monoester (11c, $\boldsymbol{\Delta}$) were determined by the integration of $\mathrm{PhCH}_{2} \mathrm{OP}$ peaks.
groups from a phosphate triester of a protected peptide. ${ }^{17}$ With this method both 2-(methyldiphenylsilyl)ethyl protecting groups were removed from the phosphate triester 9e, although, surprisingly the other phosphate triesters were stable to these deprotection conditions.

During the course of this work, Sawabe and co-workers ${ }^{21}$ showed that the triester 9 i gave the monoester 11f in the presence of a solution of aqueous hydrofluoric acid in MeCN . The reaction of the phosphate triesters $\mathbf{9 b}, \mathbf{c}, \mathbf{f}$ and \mathbf{h} with 15 equiv. of aqueous hydrofluoric acid in $\mathrm{CD}_{3} \mathrm{CN}$ were monitored by ${ }^{31} \mathrm{P}$ and ${ }^{1} \mathrm{H}$ NMR spectroscopy. The 2-(trimethylsilyl)ethyl group was cleaved at room temperature whereas the 2 (methyldiphenylsilyl)ethyl group required heating to $40^{\circ} \mathrm{C} .{ }^{17}$ In each case, some loss of one 2-trialkylsilyl protecting group was observed within 1 h , with the formation of ethene, $\delta_{\mathrm{H}}\left(\mathrm{CD}_{3} \mathrm{CN}\right) 5.42$ (s), and the trialkylsilyl fluoride, $\delta_{\mathrm{H}} 0.23$ (d, $J_{\mathrm{FH}} 7.3, \mathrm{Me}_{3} \mathrm{SiF}$) and $\delta_{\mathrm{H}} 0.77\left(\mathrm{~d}, J_{\mathrm{FH}} 7.3, \mathrm{MePh}_{2} \mathrm{SiF}\right.$) as byproducts. consistent with the reaction proceeding by fluoride anion attack at silicon. Removal of the second 2-(trialkylsilyl)ethyl group was typically complete within 24 h .

Fig. I shows the degradation profile for the phosphate triester $\mathbf{9 b}$, the percentage of each component being determined from the integration of the $\mathrm{PhCH}_{2} \mathrm{OP}$ groups in the ${ }^{1} \mathrm{H}$ NMR spectra. The chemical shifts for the relevant peaks are $\delta_{\mathrm{H}} 4.88$ (d, $J_{\mathrm{PH}} 8.3$, triester 9b), 4.95 (d, $J_{\mathrm{PH}} 7.9$, diester 10b) and 5.03 (d, $J_{\mathrm{PH}} 7.4$, monoester 11c). The data fitted the kinetic profile $\mathbf{9} \xrightarrow{k_{2}} \mathbf{1 0} \xrightarrow{k_{2}} \mathbf{1 1}$, where k_{1} and k_{2} are first order rate constants, using the program developed by Irwin. ${ }^{24}$ The rate constant k_{1}, for the conversion of the triester 9 b into the diester 10 b is $0.0119 \mathrm{~min}^{-1}\left(t_{\frac{1}{2}} 58 \mathrm{~min}\right)(r=0.991)$, and the rate constant k_{2}, for the conversion of the diester $10 b$ into the monoester 11 c is $0.00224 \mathrm{~min}^{-1}\left(t_{\frac{1}{2}} 309 \mathrm{~min}\right)(r=0.980)$, which demonstrates that removal of the second 2 -(methyldiphenylsilyl)ethyl group is five times slower than removal of the first.

An aqueous solution of hydrofluoric acid in MeCN was then used on a preparative scale to remove both 2-(trialkylsilyl)ethyl groups from the phosphate triesters $9 b-\mathbf{f}$ and 9 h to give the monoesters 11 a-e in quantitative yields. The deprotection of the phosphate triester 9 g using HF in $\mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O}$ was not successful owing to the anticipated loss of the tert-butyl group.

In summary, the bis[2-(trialkylsilyl)ethyl] N, N-dialkylphosphoramidites 6a, b and $\mathbf{7 a}, \mathbf{b}$ have been used to phosphorylate a range of alcohols. Both of the 2-(trialkylsilyl)ethyl groups on the triesters 9 could not be removed under very
mild conditions, however in the presence of aqueous hydrofluoric acid in MeCN the monoesters 11 were formed in quantitative yields.

Experimental

Instrumentation, reagent suppliers and techniques were as previously described. ${ }^{7}$ FAB mass spectra were recorded with a nitrobenzyl alcohol matrix, while CI mass spectra were recorded with NH_{3} as carrier gas. NMR spectra were recorded on a Bruker AC-250 spectrometer with field strengths of 250.1 $\left({ }^{1} \mathrm{H}\right), 101.3\left({ }^{31} \mathrm{P}\right)$ and $62.9 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$. N, N-Diisopropylphosphorochloridite $5 \mathrm{a}^{25}$ and N, N-diethylphosphorochloridite $5 \mathbf{b}^{10}$ were prepared from phosphorus trichloride and 2 equiv. of the appropriate amine using published procedures.

Bis[2-(trimethylsilyl)ethyl] N,N-Diisopropylphosphoramidite 7a.-A solution of 2-(trimethylsilyl)ethanol ($1.12 \mathrm{~g}, 9.45 \mathrm{mmol}$) and triethylamine ($0.956 \mathrm{~g}, 1.32 \mathrm{~cm}^{3}, 9.45 \mathrm{mmol}$) in diethyl ether ($20 \mathrm{~cm}^{3}$) was added dropwise over 10 min to a stirred solution of N, N-diisopropylphosphorochloridite ($0.955 \mathrm{~g}, 4.725 \mathrm{mmol}$) in diethyl ether $\left(10 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$ under an atmosphere of argon. After 4 h at $-78^{\circ} \mathrm{C}$, the insoluble material was filtered off and washed with diethyl ether. The filtrate was concentrated under reduced pressure and then subjected to purification by flash column chromatography eluting with hexane-triethylamine $(9: 1), R_{\mathrm{f}} 0.50$, which gave the title compound as a colourless oil $(0.18 \mathrm{~g}, 16 \%) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.13\left(18 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right), 0.9-1.1(4 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{Si}\right), 1.24\left(12 \mathrm{H}, \mathrm{d}, J_{\mathrm{HH}} 6.8, M e_{2} \mathrm{CH}\right), 3.4-3.6(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{Me}_{2} \mathrm{CH}\right)$ and $3.6-3.9\left(4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{Si}\right) ; \delta_{\mathrm{C}}-1.5(\mathrm{~s}$, $\left.\mathrm{SiMe}_{3}\right), 20.0\left(\mathrm{~d}, J_{\mathrm{PC}} 6.7, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{Si}\right), 24.5\left(\mathrm{~d}, J_{\mathrm{PC}} 7.2, \mathrm{Me}_{2} \mathrm{CH}\right)$, $42.6\left(\mathrm{~d}, J_{\mathrm{PC}} 12.2, \mathrm{Me}_{2} C \mathrm{H}\right)$ and $60.6\left(\mathrm{~d}, J_{\mathrm{PC}} 18.4, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{Si}\right)$; $\delta_{\mathrm{p}} 142.9$ (s).

The following compounds were prepared from the appropriate N, N-dialkylphosphorochloridite $5 \mathbf{a}, \mathbf{b}$ and the appropriate 2 -(trialkylsilyl)ethanol using a method similar to that described above.

Bis[2-(trimethylsilyl)ethyl] N,N-diethylphosphoramidite 7b. Purification by flash column chromatography not required, $(88 \%), \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.02\left(18 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right), 0.9-1.1(4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{Si}\right), 1.03\left(6 \mathrm{H}, \mathrm{t}, J_{\mathrm{HH}} 7.1, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N}\right), 3.04(4 \mathrm{H}, \mathrm{dq}$, $\left.J_{\mathrm{PH}} 9.1, J_{\mathrm{HH}} 7.1, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N}\right)$ and $3.6-3.7\left(4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{Si}\right)$; $\delta_{\mathrm{C}}-1.1\left(\mathrm{~s}, \mathrm{SiMe}_{3}\right), 15.4\left(\mathrm{~d}, J_{\mathrm{PC}} 6.2, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N}\right), 20.4\left(\mathrm{~d}, J_{\mathrm{PC}}\right.$ $\left.2.9, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{Si}\right), 37.6\left(\mathrm{~d}, J_{\mathrm{PC}} 20.4, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N}\right)$ and $60.9(\mathrm{~d}$, $\left.J_{\mathrm{PC}} 16.8, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{Si}\right) ; \delta_{\mathrm{P}} 145.3$ (s).

Bis[2-(methyldiphenylsilyl)ethyl] N,N-diisopropylphosphoramidite 6 a . R_{f} (hexane-ethyl acetate-triethylamine, $\left.8: 2: 1\right) 0.56$, $(60 \%), \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.55(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 1.12\left(12 \mathrm{H}, \mathrm{d}, J_{\mathrm{HH}} 6.8\right.$, $\mathrm{Me}_{2} \mathrm{CH}$), 1.5-1.6 (4 H, m, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{Si}\right)$, $3.4-3.6(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{Me}_{2} \mathrm{CH}\right), 3.6-3.8\left(4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{Si}\right)$ and $7.3-7.5(20 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}) ; \delta_{\mathrm{C}}-3.6(\mathrm{~s}, \mathrm{SiMe}), 18.3\left(\mathrm{~d}, J_{\mathrm{PC}} 6.4, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{Si}\right), 24.8(\mathrm{~d}$, $\left.J_{\mathrm{PC}} 7.2, M e_{2} \mathrm{CH}\right), 43.0\left(\mathrm{~d}, J_{\mathrm{PC}} 12.2, \mathrm{Me}_{2} \mathrm{CH}\right), 60.7\left(\mathrm{~d}, J_{\mathrm{PC}} 18.5\right.$, $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{Si}$), 128.2, 129.6, 134.7 and 136.9; $\delta_{\mathrm{P}} 143.3(\mathrm{~s}) ; m / z$ (FAB) 514 [$\left.\mathrm{HP}\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{SiPh}_{2} \mathrm{Me}\right)_{2}, 80 \%\right], 500$ (5), 457 (11), 344 (16), $197\left(\mathrm{MePh}_{2} \mathrm{Si}^{+}, 100\right)$ and 185 (7) (molecular ion not observed).

Bis[2-(methyldiphenylsilyl)ethyl] N,N-diethylphosphoramidite $\mathbf{6 b}$. R_{f} (hexane-ethyl acetate-triethylamine, 4:1:0.2) 0.42 , $(68 \%) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.55(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.96\left(6 \mathrm{H}, \mathrm{t}, J_{\mathrm{HH}} 9.7\right.$, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N}\right), 1.5-1.6\left(4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{Si}\right), 2.93\left(4 \mathrm{H}, \mathrm{dq}, J_{\mathrm{PH}}\right.$ $\left.9.3, J_{\mathrm{HH}} 7.1, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N}\right), 3.6-3.8\left(4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{Si}\right)$ and $7.3-7.5(\mathrm{~m}, 20 \mathrm{H}, \mathrm{Ph}) ; \delta_{\mathrm{C}}-4.0(\mathrm{~s}, \mathrm{SiMe}), 14.9\left(\mathrm{~s}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N}\right)$, 17.9 (d, $J_{\mathrm{PC}} 5.7, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{Si}$), $37.2\left(\mathrm{~d}, J_{\mathrm{PC}} 20.0, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N}\right.$), $60.2\left(\mathrm{~d}, J_{\mathrm{PC}} 16.7, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{Si}\right), 127.8,129.3,134.4$ and 136.6 ; $\delta_{\mathrm{P}} 145.4$ (s, ${ }^{1} \mathrm{H}$ decoupled), (nonet, $J_{\mathrm{PH}} 8.6,{ }^{1} \mathrm{H}$ coupled); m / z (CI) $586\left(\mathrm{M}+\mathrm{H}^{+}, 15 \%\right), 530$ (37), 457 (23), 316 (33), 214 (47) and 74 (100) (Found: $\mathrm{M}+\mathrm{H}^{+}$, 586.273. $\mathrm{C}_{34} \mathrm{H}_{45} \mathrm{NO}_{2} \mathrm{PSi}_{2}$ requires $M, 586.273$).

Bis[2-(trimethylsilyl)ethyl] Benzyl Phosphate 9a.-A solution of benzyl alcohol ($0.153 \mathrm{~g}, 1.41 \mathrm{mmol}$) in tetrahydrofuran ($2 \mathrm{~cm}^{3}$) was added dropwise to a stirred solution of $1 H$-tetrazole $(0.296 \mathrm{~g}, 4.23 \mathrm{mmol}, 3$ equiv.) and the phosphoramidite 7 b ($0.475 \mathrm{~g}, 1.41 \mathrm{mmol}$) in tetrahydrofuran $\left(5 \mathrm{~cm}^{3}\right)$ at room temp. under an argon atmosphere. After 30 min , the reaction mixture was cooled to $-40^{\circ} \mathrm{C}$ and a solution of MCPBA $(0.243 \mathrm{~g}, 1.41$ $\mathrm{mmol})$ in dichloromethane ($2 \mathrm{~cm}^{3}$) was added. The reaction mixture was maintained at $-40^{\circ} \mathrm{C}$ for 30 min , after which time it was allowed to warm to room temp. and then stirred for a further 1 h . Diethyl ether $\left(40 \mathrm{~cm}^{3}\right)$ was added and the solution was washed with aqueous sodium metabisulfite ($5 \% \mathrm{w} / \mathrm{v}, 2 \times 20$ cm^{3}) and then with aqueous sodium hydrogen carbonate (5% $w / \mathrm{v}, 2 \times 20 \mathrm{~cm}^{3}$). After drying (MgSO_{4}), the ether layer was evaporated under reduced pressure to give a clear oil. The title compound ($R_{\mathrm{f}} 0.53$) was separated from residual benzyl alcohol ($R_{\mathrm{f}} 0.30$) by flash column chromatography eluting with hexane-ethyl acetate-triethylamine ($8: 2: 1$), $0.28 \mathrm{~g}(0.72 \mathrm{mmol}$, $51 \%) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.00\left(18 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right), 1.0-1.1(4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{Si}\right), 4.0-4.1\left(4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{Si}\right), 5.05\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}_{\mathrm{PH}}\right.$ 8.2, PhCH_{2}) and 7.3-7.4 (5 H, m, Ph); $\delta_{\mathrm{C}}-1.6\left(\mathrm{~s}, \mathrm{SiMe}_{3}\right), 19.4$ (d, $J_{\mathrm{PC}} 5.8, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{Si}$), 66.1 (d, $J_{\mathrm{PC}} 6.3, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{Si}$), 68.8 (d, $\left.J_{\mathrm{PC}} 5.5, \mathrm{PhCH}_{2}\right), 127.8,128.3,128.5$ and $136.1 ; \delta_{\mathrm{P}}$ -0.83 (s).

Bis[2-(methyldiphenylsilyl)ethyl] Benzyl Phosphate 9b.-A solution of benzyl alcohol ($0.296 \mathrm{~g}, 2.74 \mathrm{mmol}$) in dichloromethane ($2 \mathrm{~cm}^{3}$) was added to a solution of the phosphoramidite $6 \mathrm{~b}(1.76 \mathrm{~g}, 3.02 \mathrm{mmol})$ in dichloromethane ($20 \mathrm{~cm}^{3}$). The reaction mixture was stirred at room temp. for 30 min , after which time a solution of $1 H$-tetrazole ($0.211 \mathrm{~g}, 3.02 \mathrm{mmol}$) in acetonitrile ($2 \mathrm{~cm}^{3}$) was added. After 1 h , the reaction was cooled to $0^{\circ} \mathrm{C}$ and a solution of MCPBA ($0.196 \mathrm{~g}, 3.02 \mathrm{mmol}$) in dichloromethane ($2 \mathrm{~cm}^{3}$) was added. After 4 h at room temp., the reaction mixture was concentrated under reduced pressure. Flash column chromatography of the residue eluting with hexane-ethyl acetate-triethylamine ($8: 2: 1$) separated a trace of benzyl alcohol ($R_{\mathrm{f}} 0.18$) from the title compound ($R_{\mathrm{f}} 0.36$) $(0.811 \mathrm{~g}, 1.27 \mathrm{mmol}, 42 \%)$; $v_{\text {max }}($ (thin film $) / \mathrm{cm}^{-1} 1257(\mathrm{P}=0)$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.50(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 1.5-1.6\left(4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{Si}\right)$, $4.0-4.1\left(4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{Si}\right), 4.95\left(2 \mathrm{H}, \mathrm{d}, J_{\mathrm{PH}} 8.2, \mathrm{PhCH}_{2}\right)$ and 7.3-7.5 ($25 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$); $\delta_{\mathrm{C}}-4.1(\mathrm{~s}, \mathrm{SiMe}), 17.4$ (d, $J_{\mathrm{PC}} 5.7$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{Si}\right), 65.7\left(\mathrm{~d}, J_{\mathrm{PC}} 6.3, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{Si}\right), 68.9\left(\mathrm{~d}, J_{\mathrm{PC}} 5.6\right.$, PhCH_{2}), 127.8, 128.0, 128.4, 128.5, 129.5, 134.3 and 135.6 (one aromatic carbon overlapping); $\delta_{\mathrm{p}}-1.10\left(\mathrm{~s},{ }^{1} \mathrm{H}\right.$ decoupled), (septet, $J_{\mathrm{PH}} 7.6,{ }^{1} \mathrm{H}$ coupled); m / z (FAB) 425 (10%), 335 (54) and $197\left(\mathrm{MePh}_{2} \mathrm{Si}^{+}, 100\right)$ (molecular ion not found).
The following compounds were prepared from the appropriate bis[2-(trialkylsilyl)ethyl] N, N-dialkylphosphoramidite and the appropriate alcohol using a method similar to that described above.
Bis[2-(trimethylsilyl)ethyl] 4-phenylbutan-2-yl phosphate $9 \mathbf{9}$. R_{f} (hexane-ethyl acetate-triethylamine, $8: 2: 1$) $0.32,60 \%$; $v_{\text {max }}($ thin film $) / \mathrm{cm}^{-1} 1252(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.01(18 \mathrm{H}, \mathrm{s}$, SiMe_{3}), $1.0-1.1\left(4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{Si}\right), 1.33\left(3 \mathrm{H}, \mathrm{d}, J_{\mathrm{HH}} 6.2\right.$, $\left.\mathrm{CH}_{3} \mathrm{CH}\right), 1.8-2.0\left(2 \mathrm{H}, \mathrm{m}, \mathrm{PhCH}_{2} \mathrm{CH}_{2}\right), 2.6-2.8(2 \mathrm{H}, \mathrm{m}$, $\mathrm{PhCH}_{2} \mathrm{CH}_{2}$), $4.0-4.2\left(4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{Si}\right), 4.4-4.5(1 \mathrm{H}$, septet, $\left.J_{\mathrm{HH}}=J_{\mathrm{PH}}=6.3, \mathrm{CH}_{3} \mathrm{CH}\right)$ and $7.1-7.3(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$; $\delta_{\mathrm{C}}-1.5\left(\mathrm{SiMe}_{3}\right), 19.51\left(\mathrm{~d}, J_{\mathrm{PC}} 6.0, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{Si}\right), 19.52(\mathrm{~d}$, $\left.J_{\mathrm{PC}} 5.9, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{Si}\right), 21.6\left(\mathrm{~d}, J_{\mathrm{PC}} 2.8, \mathrm{CH}_{3} \mathrm{CH}\right), 31.5$ $\left(\mathrm{PhCH}_{2} \mathrm{CH}_{2}\right), 39.2\left(\mathrm{~d}, J_{\mathrm{PC}} 6.3, \mathrm{PhCH}_{2} \mathrm{CH}_{2}\right), 65.80\left(\mathrm{~d}, J_{\mathrm{PC}} 6.3\right.$, $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{Si}$), 65.85 (d, $J_{\mathrm{PC}} 6.3, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{Si}$), 75.1 (d, $J_{\mathrm{PC}} 6.2$, $\left.\mathrm{CH}_{3} \mathrm{CH}\right), 125.9,128.3,128.4$ and $141.8 ; \delta_{\mathrm{p}}-1.50\left(\mathrm{~s},{ }^{1} \mathrm{H}\right.$ decoupled), (sextet, $J_{\mathrm{PH}} 6.5,{ }^{1} \mathrm{H}$ coupled); m / z (FAB) $453\left(\mathrm{M}+\mathrm{Na}^{+}\right.$, 15%), 375 (10), 315 (27), 243 (100), 227 (9) and 211 (16) (Found: $\mathrm{M}+\mathrm{Na}^{+}, 453.200 . \mathrm{C}_{20} \mathrm{H}_{39} \mathrm{NaO}_{4} \mathrm{PSi}_{2}$ requires 453.202).

Bis[2-(methyldiphenylsilyl)ethyl] 4-phenylbutan-2-yl phosphate 9d. R_{f} (hexane-ethyl acetate-triethylamine, 8:2:1) 0.35 ,
64% (Found: C, $70.6 ; \mathrm{H}, 6.9 . \mathrm{C}_{40} \mathrm{H}_{4} 7 \mathrm{O}_{4} \mathrm{PSi}_{2}$ requires $\mathrm{C}, 70.78$; $\mathrm{H}, 6.98 \%)$; $v_{\text {max }}($ thin film $) / \mathrm{cm}^{-1} 1259(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.56$ ($6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}$), $1.26\left(3 \mathrm{H}, \mathrm{d}, J_{\mathrm{HH}} 6.2, \mathrm{CH}_{3} \mathrm{CH}\right), \mathrm{I} .6-1.7(4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{Si}\right), 1.8-2.0\left(2 \mathrm{H}, \mathrm{m}, \mathrm{PhCH}_{2} \mathrm{CH}_{2}\right), 2.5-2.7(4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{PhCH}_{2} \mathrm{CH}_{2}\right), 4.1-4.2\left(4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{Si}\right), 4.42(1 \mathrm{H}$, septet, $\left.J_{\mathrm{PH}}=J_{\mathrm{HH}}=5.9, \mathrm{CH}_{3} \mathrm{CH}\right)$ and $7.1-7.5(25 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}$ $-4.0(\mathrm{SiMe}), 17.5\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PC}} 3.1, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{Si}\right), 21.5\left(\mathrm{~d}, J_{\mathrm{PC}} 2.8\right.$, $\left.\mathrm{CH}_{3} \mathrm{CH}\right), 31.4\left(\mathrm{PhCH}_{2} \mathrm{CH}_{2}\right), 39.1\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PC}} 6.5, \mathrm{PhCH}_{2} \mathrm{CH}_{2}\right), 65.4$ (d, $J_{\mathrm{PC}} 6.2, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{Si}$), 75.2 (d, $J_{\mathrm{PC}} 6.2, \mathrm{CH}_{3} \mathrm{CH}$), 126.8, 128.0 , 128.2, 129.6, 134.3, 136.3 and 142.4 (one aromatic carbon overlapping); $\delta_{\mathrm{P}}-1.71$ (s, ${ }^{1} \mathrm{H}$ decoupled), (sextet, $J_{\mathrm{PH}} 7.1,{ }^{1} \mathrm{H}$ coupled).
Bis[2-(methyldiphenylsilyl)ethyl] phenethyl phosphate 9e. R_{f} (hexane-ethyl acetate-trimethylamine, $8: 2: 1$) $0.60,69 \%$; $v_{\text {max }}($ (thin film $) / \mathrm{cm}^{-1} 1272(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.55(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe})$, $1.5-1.6\left(4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{Si}\right), 2.88\left(2 \mathrm{H}, \mathrm{t}, J_{\mathrm{HH}} 7.0\right.$, $\left.\mathrm{PhCH}_{2}\right), 4.0-4.1\left(6 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{Si}, \mathrm{PhCH}_{2} \mathrm{CH}_{2}\right)$ and 7.1-7.4 ($25 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$); $\delta_{\mathrm{C}}-4.1$ (SiMe), 17.4 (d, $J_{\mathrm{PC}} 5.2$, $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{Si}$), 36.7 (d, $J_{\mathrm{PC}} 7.2, \mathrm{PhCH} 2$), 65.6 (d, $J_{\mathrm{PC}} 6.2$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{Si}\right), 67.7\left(\mathrm{~d}, J_{\mathrm{PC}} 5.7, \mathrm{PhCH}_{2} \mathrm{CH}_{2}\right.$), 126.6, $128.0,128.4$, $128.9,129.5,134.3,135.6$ and $137.2 ; \delta_{\mathrm{p}}-1.23\left(\mathrm{~s},{ }^{1} \mathrm{H}\right.$ decoupled), (septet, $J_{\mathrm{PH}} 7.4,{ }^{1} \mathrm{H}$ coupled); m / z (FAB) 335 (48%), 242 (10), $197\left(\mathrm{MePh}_{2} \mathrm{Si}^{+}, 100\right)$ and 105 (52) (molecular ion not found).
Bis[2-(methyldiphenylsilyl)ethyl] methyl phosphate 9f. R_{f} (hexane-ethyl acetate-triethylamine, 8:2:1) $0.41,50 \%$ (elemental analysis not correct: Found: C, $62.7 ; \mathrm{H}, 5.85$. $\mathrm{C}_{31} \mathrm{H}_{3} 7 \mathrm{O}_{4} \mathrm{PSi}_{2}$ requires C, $\left.66.43 ; \mathrm{H}, 6.65 \%\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.58$ $(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 1.6-1.7\left(4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{Si}\right), 3.62\left(3 \mathrm{H}, \mathrm{d}, J_{\mathrm{PH}}\right.$ 11.1, $\left.\mathrm{CH}_{3} \mathrm{O}\right), 4.1-4.2\left(4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right)$ and $7.3-7.5(20 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}) ; \delta_{\mathrm{C}}-4.1(\mathrm{SiMe}), 17.4$ (d, $\left.J_{\mathrm{PC}} 5.7, \mathrm{CH}_{2} \mathrm{Si}\right), 53.9$ (d, $J_{\mathrm{PC}} 6.0$, $\mathrm{CH}_{3} \mathrm{O}$), 65.6 (d, $\mathrm{J}_{\mathrm{PC}} 6.2, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{Si}$), 127.9, 128.0, 129.5 and 134.3; $\delta_{\mathrm{P}}-1.05$ ($\mathrm{s},{ }^{1} \mathrm{H}$ decoupled).

Bis[2-(methyldiphenylsilyl)ethyl] tert-butyl phosphate $9 \mathrm{~g} . R_{\mathrm{f}}$ (hexane-ethyl acetate-triethylamine, 8:2:1) $0.35,83 \%$ (elemental analysis not correct: Found: C, 65.0; H, 7.3. $\mathrm{C}_{34} \mathrm{H}_{43} \mathrm{O}_{4} \mathrm{PSi}_{2}$ requires $\mathrm{C}, 67.76 ; \mathrm{H}, 7.19 \%$); $v_{\text {max }}($ (thin film) $/ \mathrm{cm}^{-1} 1261(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.57(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe})$, 1.40 ($9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}$), $1.6-1.7\left(4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{Si}\right), 4.0-4.1(4 \mathrm{H}, \mathrm{m}$, $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{Si}$) and $7.3-7.5(20 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}-4.09$ (SiMe), 17.4 (d, $J_{\mathrm{PC}} 4.8, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{Si}$), 29.8 (d, $J_{\mathrm{PC}} 4.3, \mathrm{Me}_{3} \mathrm{C}$), 65.0 (d, $\left.J_{\mathrm{PC}} 6.2, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{Si}\right), 82.5\left(\mathrm{~d}, J_{\mathrm{PC}} 7.1, \mathrm{Me}_{3} \mathrm{C}\right)$, 128.0, 129.2, 134.3 and 135.7; $\delta_{\mathrm{P}}-1.55\left(\mathrm{~s},{ }^{1} \mathrm{H}\right.$ decoupled) (pentet, $J_{\mathrm{PH}} 7.4$, ${ }^{1} \mathrm{H}$ coupled).
2,3,4,5,6-Penta-O-benzyl-myo-inositol $1-\{$ bis[2-(methyldiphenylsilyl)ethyl] phosphate $\}$ 9h. R_{f} (hexane-ethyl acetate-triethylamine, $8: 2: 1$) $0.20,46 \%$ (elemental analysis not correct: Found: C, 67.8; H, 6.6. $\mathrm{C}_{71} \mathrm{H}_{75} \mathrm{O}_{9} \mathrm{PSi}_{2}$ requires $\mathrm{C}, 73.56 ; \mathrm{H}, 6.52 \%$); $v_{\text {max }}($ thin film $) / \mathrm{cm}^{-1} 1257(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.49(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe})$, $1.5-1.6\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Si}\right), 3.45\left(2 \mathrm{H}, \mathrm{t}, J_{\mathrm{HH}} 8.6,3-\mathrm{H}\right.$ and $\left.5-\mathrm{H}\right)$, $4.0-4.2\left(7 \mathrm{H}, \mathrm{m}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{Si}, 1-\mathrm{H}, 4-\mathrm{H}\right.$ and $\left.6-\mathrm{H}\right), 4.29(1 \mathrm{H}, \mathrm{s}$, $2-\mathrm{H}), 4.7-4.9\left(10 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{Ph}\right)$ and $7.2-7.5(45 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{c}}$ -4.16 (SiMe), 17.5 (d, $\left.J_{\mathrm{PC}} 4.1, \mathrm{CH}_{2} \mathrm{Si}\right)$, 65.8-65.9 (2 overlapping $\mathrm{d}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{Si}$), 72.6, 75.0, 75.3, 75.8, 75.9 $\left(\mathrm{PhCH}_{2}\right), 78.3$ (d, $\left.J_{\mathrm{PC}} 6.1\right), 80.0\left(\mathrm{~d}, J_{\mathrm{PC}} 6.9\right), 80.3,81.2,83.0$ (inositol CH , one CH overlapping or masked by CDCl_{3}), 127.4, 127.5, 127.6, 127.8, 127.9, 128.1, 128.3, 129.5, 134.2, 135.3, $135.4,138.1,138.4,138.4,138.5$ and 138.7 ; $\delta_{\mathrm{P}}-1.38$ (s).

Attempted Deprotection of Bis[2-(methyldiphenylsilyl)ethyl] Benzyl Phosphate 9b with Tetrabutylammonium Fluoride in $T H F$.-TBAF $(0.128 \mathrm{~g}, 0.41 \mathrm{mmol})$ in THF $\left(1 \mathrm{~cm}^{3}\right)$ was added over 5 min to a stirred solution of $9 \mathrm{~b}(0.129 \mathrm{~g}, 0.203 \mathrm{mmol})$ in THF ($1 \mathrm{~cm}^{3}$). After 24 h at room temp., the solvent was evaporated under reduced pressure and portions of ethanol ($2 \mathrm{~cm}^{3}$) were added and removed by evaporation several times. An aqueous solution of ammonia $\left(1 \mathrm{~cm}^{3}\right)$ was added to give a precipitate of the diester $\mathbf{1 0 b}, \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.41(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe})$,
1.4-1.5 (2 H, m, OCH $\left.{ }_{2} \mathrm{CH}_{2} \mathrm{Si}\right), 3.9-4.0\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH} \mathrm{O}_{2} \mathrm{CH}_{2} \mathrm{Si}\right)$, $4.92\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}_{\mathrm{PH}} 8.2, \mathrm{PhCH}_{2} \mathrm{O}\right)$ and $7.1-7.4(15 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{P}}$ 0.13 (pentet, $J_{\mathrm{PH}} 7.2,{ }^{1} \mathrm{H}$ coupled).

Attempted Deprotection of Bis[2-(methyldiphenylsilyl)ethyl] Benzyl Phosphate 9b with Tetrabutylammonium Fluoride in DMSO.-A solution of TBAF ($0.049 \mathrm{~g}, 0.156 \mathrm{mmol}$) in DMSO $\left(1 \mathrm{~cm}^{3}\right)$ was added to a solution of $9 \mathrm{~b}(0.050 \mathrm{~g}, 0.078 \mathrm{mmol})$ in DMSO $\left(1 \mathrm{~cm}^{3}\right)$. The mixture was stirred at $70^{\circ} \mathrm{C}$ for 2 h , under an argon atmosphere. The ${ }^{31} \mathrm{P}$ NMR spectrum of the crude reaction mixture was consistent with the diester $\mathbf{1 0 b}$, $\delta_{\mathrm{P}}-0.85$ (pentet, $J_{\mathrm{PH}} 6.3,{ }^{1} \mathrm{H}$ coupled, 90%). The reaction was left at $70^{\circ} \mathrm{C}$ for a further 16 h which gave monoester 11c, $\delta_{\mathrm{P}}-0.48$ (t, $J_{\mathrm{PH}} 6.0,{ }^{1} \mathrm{H}$ coupled), together with 30% inorganic phosphate, $\delta_{\mathrm{p}} 0.03$ ($\mathrm{s},{ }^{1} \mathrm{H}$ coupled).

Attempted Deprotection of Bis[2-(methyldiphenylsilyl)ethyl] Phenethyl Phosphate 9e with Ammonium Fluoride.-A solution of ammonium fluoride ($0.045 \mathrm{~g}, 1.21 \mathrm{mmol}$) in MeOH $\left(1 \mathrm{~cm}^{3}\right)$ was added to a stirred solution of $9 \mathrm{e}(0.057 \mathrm{~g}, 0.088$ $\mathrm{mmol})$ in $\mathrm{MeOH}\left(1 \mathrm{~cm}^{3}\right)$. The mixture was stirred under an argon atmosphere at $60^{\circ} \mathrm{C}$ for 72 h , after which the solvent was removed under reduced pressure and the residue treated with aqueous ammonia ($1 \mathrm{~cm}^{3}$) to give a white precipitate, the ${ }^{31} \mathrm{P}$ NMR spectrum of which was consistent with the diester 10e, $\delta_{\mathrm{P}}\left(\mathrm{CD}_{3} \mathrm{OD}\right) 2.61$ (pentet, $J_{\mathrm{PH}} 6.3,{ }^{1} \mathrm{H}$ coupled).

Phenethyl Phosphate (Free Acid) 11a.-Trifluoroacetic acid (0.035 g .0 .308 mmol) was added to a stirred solution of $9 \mathbf{e}$ ($0.050 \mathrm{~g}, 0.077 \mathrm{mmol}$) in THF $\left(1 \mathrm{~cm}^{3}\right)$. The reaction mixture was stirred at room temp. under an argon atmosphere for 24 h . The solvent was evaporated under reduced pressure to give a white solid which was washed with chloroform. Deprotection was quantitative, shown by ${ }^{31} \mathrm{P}$ NMR spectroscopy, to give the title compound, $\left.\delta_{\mathrm{H}}\left(\mathrm{D}_{2} \mathrm{O}\right) 2.98\left(2 \mathrm{H}, \mathrm{t}, J_{\mathrm{HH}} 6.9, \mathrm{PhCH}\right)_{2}\right), 4.07(2 \mathrm{H}$, $\left.\mathrm{dt}, J_{\mathrm{PH}}=J_{\mathrm{HH}}=6.9, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$ and $7.3-7.5(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}$ 33.7 (d, $\left.J_{\mathrm{PC}} 6.9, \mathrm{PhCH}_{2}\right), 63.1\left(\mathrm{~d}, J_{\mathrm{PC}} 5.2, \mathrm{CH}_{2} \mathrm{O}\right), 123.9,126.0$, 126.5 and $136.2 ; \delta_{\mathrm{P}} 1.68\left(\mathrm{t}, J_{\mathrm{PH}} 6.4,{ }^{1} \mathrm{H}\right.$ coupled).

Deprotections were attempted on the following compounds using a method analogous to that described above.

Attempted deprotection of bis[2-(methyldiphenylsilyt)ethyl] 4-phenylbutan-2-ylphosphate 9d. The ${ }^{31} \mathrm{P}$ NMR spectrum of the aqueous layer showed no phosphorus-containing material, whereas the chloroform layer gave $\delta_{\mathrm{P}}-1.62$ (sextet, $J_{\mathrm{PH}} 6.7$, ${ }^{1} \mathrm{H}$ coupled) consistent with the triester 9 d .

Attempted deprotection of bis[2-(methyldiphenyIsilyl)ethyl] benzyl phosphate $9 \mathbf{9 b}$. ${ }^{31} \mathrm{P}$ NMR spectroscopy of the aqueous layer showed a small amount of the monoester 11c, $\delta_{\mathrm{p}} 1.00$ ($\mathrm{t}, J_{\mathrm{PH}} 7.0,{ }^{1} \mathrm{H}$ coupled). The chloroform layer contained the majority of the material, which proved to be starting material, $\delta_{\mathrm{P}}-1.07$ (sept, $J_{\mathrm{PH}} 7.7,{ }^{1} \mathrm{H}$ coupled).

Phenethyl Phosphate (Ammonium Salt) 11a.-Hydrofluoric acid (40% aqueous solution; $0.034 \mathrm{~g}, 1.702 \mathrm{mmol}$) was added to a stirred solution of the triester $9 \mathrm{e}(0.074 \mathrm{~g}, 0.114 \mathrm{mmol})$ in $\mathrm{MeCN}\left(1 \mathrm{~cm}^{3}\right)$. The reaction mixture was stirred at $40^{\circ} \mathrm{C}$ under an argon atmosphere for 24 h . A solution of aqueous ammonia $\left(1 \mathrm{~cm}^{3}\right)$ was added and the resultant ammonium fluoride salt was filtered off. The solvent was evaporated under reduced pressure to give the title compound, quantitatively by ${ }^{31} \mathrm{P}$ NMR spectroscopy, as a white solid, $\delta_{\mathrm{H}}\left(\mathrm{D}_{2} \mathrm{O}\right) 2.59\left(2 \mathrm{H}, \mathrm{t}, J_{\mathrm{HH}} 6.8\right.$, $\left.\mathrm{PhCH} H_{2}\right), 3.70\left(2 \mathrm{H}, \mathrm{dt}, J_{\mathrm{PH}}=J_{\mathrm{HH}}=6.8, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$ and $7.0-$ $7.1(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}} 33.6\left(\mathrm{~d}, J_{\mathrm{PC}} 7.1, \mathrm{PhCH} 2\right.$), 63.3 (d, $J_{\mathrm{PC}} 4.3$, $\mathrm{CH}_{2} \mathrm{O}$), 123.8, 125.9, 126.4 and 135.9; $\delta_{\mathrm{P}} 1.13\left(\mathrm{t}, J_{\mathrm{PH}} 7.0,{ }^{1} \mathrm{H}\right.$ coupled); miz (FAB) peaks included 171 (37%), 203 (M + H, 15). $220\left(\mathrm{M}+\mathrm{NH}_{4}, 17\right)$ and $226(\mathrm{M}+\mathrm{Na}, 5)$.

The following compounds were prepared by treatment of the appropriate triester with 15 equiv. of hydrofluoric acid using a method similar to that described above.

4-Phenylbutan-2-yl Phosphate (Ammonium Salt) 11b was prepared quantitatively from triester $9 \mathrm{c}, \delta_{\mathrm{H}}\left(\mathrm{D}_{2} \mathrm{O}\right) 1.33(3 \mathrm{H}$, d, $\left.J_{\mathrm{HH}} 6.2, \mathrm{CH}_{3} \mathrm{CH}\right), 1.9-2.0\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 2.7-2.8(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{PhCH})_{2}\right), 4.3-4.4(1 \mathrm{H}, \mathrm{m}, \mathrm{OCH})$ and $7.3-7.5(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$; $\delta_{\mathrm{C}} 23.4\left(\mathrm{CH}_{3} \mathrm{CH}\right), 33.5\left(\mathrm{~s}, \mathrm{PhCH}_{2}\right), 41.5\left(\mathrm{~d}, J_{\mathrm{PC}} 5.9\right.$, $\mathrm{CHCH}_{2} \mathrm{CH}$), 75.4 (d, $J_{\mathrm{PC}} 5.7, \mathrm{OCH}$), 128.4, 130.9, 131.1 and 145.1; $\delta_{\mathrm{P}} 2.43$ ($\mathrm{d}, J_{\mathrm{PH}} 7.2,{ }^{1} \mathrm{H}$ coupled); m / z (FAB) peaks included $171(100 \%)$, $231(\mathrm{M}+\mathrm{H}, 50), 248\left(\mathrm{M}+\mathrm{NH}_{4}, 30\right)$, $324(30), 461(2 \mathrm{M}+\mathrm{H}, 45)$ and $478\left(2 \mathrm{M}+\mathrm{NH}_{4}, 10\right)$.
4-Phenylbutan-2-yl Phosphate (Ammonium salt) 11b was prepared from 9 d , reaction temperature $40^{\circ} \mathrm{C}$. The data obtained were as described for the above experiment.
Benzyl Phosphate (Ammonium Salt) 11c was prepared from 9b, reaction temperature $40^{\circ} \mathrm{C}, \delta_{\mathrm{H}}\left(\mathrm{D}_{2} \mathrm{O}\right) 4.82\left(2 \mathrm{H}, \mathrm{d}, J_{\mathrm{PH}} 8.3\right.$, PhCH_{2}) and 7.3-7.4 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$); $\delta_{\mathrm{C}} 65.0\left(\mathrm{~d}, J_{\mathrm{PC}} 5.2\right.$), 125.2, 125.7, 126.1 and 135.0 (d, $J_{\mathrm{PC}} 7.1$); $\delta_{\mathrm{P}}-0.48$ (t, $J_{\mathrm{PH}} 6.0,{ }^{1} \mathrm{H}$ coupled); $m / z(\mathrm{FAB})$ peaks included $171(100 \%), 189(\mathrm{M}+\mathrm{H}$, 23), $211(\mathrm{M}+\mathrm{Na}, 40), 324$ (30), 377 ($2 \mathrm{M}+\mathrm{H}, 10$) and 399 $(2 \mathrm{M}+\mathrm{Na}, 13)$.
Methyl Phosphate (Free Acid) 11d was prepared from 9f, reaction temperature $40^{\circ} \mathrm{C}$. After 24 h , the solvent was evaporated under reduced pressure and the residue was redissolved in $\mathrm{CD}_{3} \mathrm{CN}, \delta_{\mathrm{H}}\left(\mathrm{CD}_{3} \mathrm{CN}\right) 3.59$ ($3 \mathrm{H}, \mathrm{d}, J_{\mathrm{PH}} 9.5, \mathrm{Me}$); $\delta_{\mathrm{C}} 54.8\left(\mathrm{~d}, J_{\mathrm{PC}} 5.7, \mathrm{Me}\right) ; \delta_{\mathrm{P}} 5.47\left(\mathrm{q}, J_{\mathrm{PH}} 9.9,{ }^{1} \mathrm{H}\right.$ coupled).
2,3,4,5,6-Penta-O-benzyl-myo-inositol 1-(dihydrogen phosphate) 11e was prepared from 9 h , reaction temperature $40^{\circ} \mathrm{C}$. After 24 h , the solvent was evaporated under reduced pressure and the residue was redissolved in $\mathrm{CD}_{3} \mathrm{CN}$, $\delta_{\mathrm{H}}\left(\mathrm{CD}_{3} \mathrm{CN}\right) 3.39\left(2 \mathrm{H}, \mathrm{t}, J_{\mathrm{HH}} 9.0,3-\mathrm{H}\right.$ and $\left.5-\mathrm{H}\right), 4.0-4.2$ (14 $\mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{Ph}, 2-\mathrm{H}, 1-\mathrm{H}, 4-\mathrm{H}$ and $\left.6-\mathrm{H}\right)$ and $7.2-7.6(25 \mathrm{H}$, m, Ph): $\delta_{\mathrm{C}} 73.1,73.6\left(\mathrm{~d}, J_{\mathrm{PC}} 3.4\right), 76.2,76.4$ (d, $J_{\mathrm{PC}} 6.1$), 76.7, 78.3 (inositol CH), 82.0, 82.2, 83.2, 84.0, $84.6\left(\mathrm{PhCH}_{2}\right)$, $128.7,128.8,129.2,129.3,129.4,129.6,129.7$. 129.75, 129.8. 129.9, 129.95, 130.0, 130.5 and 135.3 (aromatics); $\delta_{\mathrm{P}} 4.69$ (d, $J_{\mathrm{PH}} 7.9,{ }^{1} \mathrm{H}$ coupled).
Attempted deprotection of bis[2-(methyldipheny/silyl)ethyl $]$ tert-butyl phosphate 9 g . After 24 h the solvent was evaporated under reduced pressure and the residue was redissolved in $\mathrm{CD}_{3} \mathrm{CN}$. The ${ }^{1} \mathrm{H}$ NMR spectrum showed loss of the Bu' group as 2-methylpropene $\left[\delta_{\mathrm{H}} 1.73(6 \mathrm{H}, \mathrm{s}, \mathrm{Me})\right.$ and $4.67(2 \mathrm{H}, \mathrm{s}$, $\left.\left.=\mathrm{CH}_{2}\right)\right]$ and $\mathrm{Bu} \mathrm{A}^{\mathrm{OH}}\left[\delta_{\mathrm{H}} 1.20\left(\mathrm{~s}, \mathrm{Bu}^{\prime}\right)\right]$.

Deprotection Studies on Phosphates 9b, c, f, h by ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR Spectroscopy:-The phosphates 9b, c, f, $\mathbf{h}(20 \mu \mathrm{~mol})$ were dissolved in $\mathrm{CD}_{3} \mathrm{CN}\left(0.5 \mathrm{~cm}^{3}\right)$ and 15 equiv. of 40% aqueous HF in acetonitrile ($0.5 \mathrm{~cm}^{3}$) was added. For 9 c the sample in the NMR tube was incubated at $25^{\circ} \mathrm{C}$, whereas for 9 b , f, h the reaction temperature was $40^{\circ} \mathrm{C}$. The reactions were followed by recording either a ${ }^{1} \mathrm{H}$ or ${ }^{31} \mathrm{P}$ NMR spectrum every 30 min . Reaction kinetics were analysed by integration of the $\mathrm{PhCH}_{2} \mathrm{OP}$ peaks for the triester, diester and monoester of the phosphate 9 b and by integration of the ethene and trialkylsilyl fluoride by-product peaks. The triester $9 \mathrm{f}\left[\delta_{\mathrm{H}}\right.$ included 3.57 (d, $J_{\mathrm{PH}} 11.1, \mathrm{OMe}$)] decomposed to give the diester $10 \mathrm{f}\left[\delta_{\mathrm{H}}\right.$ included $3.62\left(\mathrm{~d}, J_{\mathrm{PH}} 11.2, \mathrm{OMe}\right)$] which, in turn, was degraded to the monoester 11 d [δ_{H} included 3.69 (d, J_{PH} 11.3, OMe)]. The triester $9 \mathrm{~h}\left(\delta_{\mathrm{p}}-1.89\right)$ decomposed to give the diester 10 h ($\delta_{\mathrm{p}}-1.73$) and ultimately the monoester 11e ($\delta_{\mathrm{p}}-1.05$). The triester 9c ($\delta_{\mathrm{p}}-1.63$) decomposed to give the diester 10c $\left(\delta_{\mathrm{p}}-1.17\right)$, which degraded to the monoester $11 \mathrm{~b}\left(\delta_{\mathrm{P}}-0.50\right)$.

Acknowledgements

We thank Dr. W. J. Irwin for assistance with the kinetic analysis, SERC and Aston Molecules for a Total-Technology Studentship (K. R.), the Lister Institute for a fellowship (S. F.) and the SERC mass spectrometry service at Swansea for mass spectral analyses.

References

1 A preliminary account of this work was presented at the Royal Society of Chemistry Autumn Meeting, University of Warwick, September 1993.
2 L. A. Slotin, Synthesis, 1977, 737.
3 C. B. Reese and J. G. Ward, Tetrahedron Lett., 1987, 28, 2309
4 E. Uhlmann and J. Engels, Tetrahedron Lett., 1986, 27, 1023.
5 J. W. Perich and R. B. Johns, Tetrahedron Lett., 1987, 28, 101.
6 K.-L. Yu and B. Fraser-Reid, Tetrahedron Lett., 1988, 29, 979.
7 W. Thomson, D. Nicholls, W. J. Irwin, J. S. Al-Mushadani, S. Freeman, A. Karpas, J. Petrik, N. Mahmood and A. J. Hay, J. Chem. Soc., Perkin Trans. 1, 1993, 1239.

8 W. Bannwarth and A. Trzeciak, Helv. Chim. Acta, 1987, 70, 175
9 W. Bannwarth and E. Küng, Tetrahedron Lett., 1989, 30, 4219.
10 J. W. Perich and R. B. Johns, Synthesis, 1988, 142.
11 D. Coe, S. L. Flitsch, H. Hilpert, M. Liebster, S. M. Roberts and N. J. Turner, Chem. Ind., 1989, 724.

12 Y. Watanabe, Y. Komoda, K. Ebisuya and S. Ozaki, Tetrahedron Lett., 1990, 31, 255.
13 S. Ozaki, Y. Kondo, N. Shiotani, T. Ogasawara and Y. Watanabe, J. Chem. Soc., Perkin Trans. 1, 1992, 729.

14 M. Lalonde and T. H. Chan, Synthesis, 1985, 817.

15 V. T. Ravikumar, H. Sasmor and D. L. Cole, Bioorg. Med. Chem. Lett., 1993, 3, 2637.
16 J. E. Celebuski, C. Chan and R. A. Jones, J. Org. Chem., 1992, 57, 5535.
17 H.-G. Chao, M. S. Bernatowicz, C. E. Klimas and G. R. Matsueda, Tetrahedron Lett., 1993, 34, 3377.
18 G. R. Baker, D. C. Billington and D. Gani, Tetrahedron, 1991, 47, 3895.

19 S. Honda and T. Hata, Tetrahedron Lett., 1981, 22, 2093.
20 T. Wada and M. Sekine, Tetrahedron Lett., 1994, 35, 757.
21 A. Sawabe, S. A. Filla and S. Masamune, Tetrahedron Lett., 1992, 33, 7685.

22 B. H. Lipshutz, J. J. Pegram and M. C. Morey, Tetrahedron Lett., 1981, 22, 4603.
23 W. Zhang and M. J. Robins, Tetrahedron Lett., 1992, 33, 1177.
24 W. J. Irwin, Kinetics of Drug Decomposition: BASIC Computer Solutions, Elsevier, Amsterdam, 1990, p. 75.
25 T. Tanaka, S. Tamatsukuri and M. Ikehara, Tetrahedron Lett., 1986, 27, 199.

[^0]: \dagger Address for correspondence: Department of Pharmacy, University of Manchester, Manchester M13 9PL, UK.

